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Abstract

Knowledge is increasingly stored and exchanged via hierarchical data formats, e.g,
via the Extensible Markup Language (XML). This knowledge is often regularly up-
dated, and thus it is beneficial if one can efficiently model, find and express those
changes in order to exchange them, to visualize them, or to reconcile them with
other changes.

In this thesis, change operations on hierarchical data and the costs of those op-
erations are defined, and a method is described which efficiently finds differences
between hierarchical data, i.e. trees, and expresses them using the change oper-
ations in an approximately cost-minimal edit script. To support a wide range of
applications, the method works both with hierarchical data where the order of el-
ements is important and with hierarchical data where it is not important. It also
supports a wide range of change operations, including copying or moving of whole
sub-trees.

Extending existing methods, the cost of the edit scripts is reduced by first building
feature vectors of sub-trees, saving them in index structures and then using them to
find similar sub-trees rapidly. This does discover cost-reducing similarities which
other methods miss and thus decreases the cost of the edit scripts, generated by the
method developed in this thesis.

By comparing and evaluating the performance of several different index struc-
tures and by benchmarks with artificial and natural hierarchical data, the approach
was optimized for speed and quality. Comparisons with other methods using the
same operations show that the developed method generates edit scripts with less
cost for most of the test data while having comparative runtime. The approach pre-
sented in thesis is therefore both better and more flexible than other comparable
approaches.
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Zusammenfassung

Immer mehr Wissen wird in hierarchischen Datenformaten gespeichert und ausge-
tauscht, zum Beispiel mit XML. Da sich dieses Wissen oft ändert ist es vorteilhaft,
wenn man ein Modell für diese Änderungen hat und sie effizient auffinden und
ausdrücken kann, um sie auszutauschen, zu visualisieren oder um sie mit anderen
Änderungen zusammenzuführen.

In dieser Arbeit werden eben solche Änderungsoperationen auf hierarchische
Daten und deren Kosten definiert, um dann eine Methode vorzustellen, die effizient
Änderungen zwischen verschiedenen Versionen hierarchischer Daten (Bäume) fin-
det und diese dann mit der Hilfe der Änderungsoperationen ungefähr Kosten-
minimal in einer Liste von Operationen auszudrücken. Um ein weites Feld von
Anwendungen zu unterstützen, funktioniert diese Methode mit Bäumen, deren
Knotenreihenfolge wichtig ist, ebenso wie mit Bäumen, bei denen sie unwichtig
ist. Die Methode unterstützt auch eine große Anzahl an Änderungsoperationen,
unter anderem das Kopieren und Bewegen ganzer Teilbäume.

Aufbauend auf existierende Ansätze, reduziert die in dieser Arbeit vorgestellte
Methode die Kosten der Liste von Operationen, indem ein Ansatz verwendet wird,
der Eigenschaftsvektoren von Teilbäumen berechnet, diese in schnelle Indexstruk-
turen speichert, um dann schnell ähnliche Teilbäume zu finden. Ähnliche Baum-
strukturen, die andere Ansätze nicht finden, werden so entdeckt. Dies ermöglicht
die Änderungen zwischen den Versionen der hierarchischen Daten mit einer klein-
eren Menge von Operationen auszudrücken.

Durch den Vergleich von Performanz und Qualität verschiedener Indexstruk-
turen für die Ähnlichkeitssuche und durch Benchmarks mit synthetischen und nat-
ürlichen Daten wurde die Qualität und Geschwindigkeit der Methode optimiert.
Vergleiche mit anderen Ansätzen, die das gleiche Ergebnis verfolgen, zeigen dann,
dass die entwickelte Methode in den meisten Fällen Listen von Operationen mit
geringeren Kosten erzeugt, während die Laufzeit vergleichbar bleibt. Der in dieser
Arbeit präsentierte Ansatz ist somit besser und flexibler als andere, vergleichbare
Ansätze.
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1 Introduction
Data may be organized with a varying degree of complexity. This Thesis, for exam-
ple, is organized into chapters, sections and paragraphs and thus in a hierarchical
fashion. This is better than using a less complex way, say a flat way, of organiz-
ing and presenting knowledge, as this knowledge is inherently hierarchical and not
presenting it in a hierarchical fashion would remove this aspect. Thus for text docu-
ments a hierarchical way of organization seems most appropriate, as in many other
areas, be it HTML and semantic web pages, XML or file systems. Having such a
hierarchical knowledge representation one may ask the question about how this
hierarchical knowledge changed over time and how this change can be efficiently
obtained and modeled, given only snapshots of the data. Being able to do so would
result in an efficient way of storing, using and analysing this evolution, without
introducing change monitoring, which may be costly or impossible a posteriori.

Future search engines, for example, will probably increasingly work with hierar-
chical data. Even today, Google analyzes where in the HTML tree text is and uses
this to gauge the importance of text fragments. If a hierarchical change detection
algorithm such as what is developed in this thesis, is used, only changes between
versions have to be analyzed and fed into the search engine’s database. The search
engine has an internal database, optimized for supporting fast search queries, in
which it stores current versions of documents. If a document changes, it needs to
change the copy plus the index structure for the searching. Namely it needs to
know what it has to add, what to remove and what to move somewhere else in its
internal database. Since changes to this database are costly, it is beneficial to have
a pre-processing step which minimizes the required number of changes to update
the copy. A schematic of such a process can be seen in Figure 1.1.

Detecting changes becomes difficult if a large number of changes accumulate be-
tween versions and if there is no change tracking mechanism. Both circumstances
hold in the website example and many other cases.

Change monitoring is a more straight-forward application for a method which
models and finds changes between versions of hierarchical data. Being able to view
and highlight changes between versions of hierarchical configuration files or docu-
ments is a problem every change or content management software needs to solve.
Often this is done using line based differencing algorithms, which give less than op-
timal results for hierarchical data. For example, in Figure 1.2, the line based diff is
wholly disconnected from what the user did and thus not helpful if those changes
are inspected. Using algorithms specialized for hierarchical data produces more
meaningful results and often more accurately describes the changes that occurred.
Another scenario where standard line based differencing tools fail is with orderless
data, when the hierarchical data does not represent a document any more. Since
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v1

v2

v3

v4

Website

v1

v4

Search engine
database

Crawler

download
Calculate hierarchical 

differences

Update database
with differences

Figure 1.1: Being able to efficiently identify changes in documents the minimizes
number of changes in further processing stages, e.g., of a website
crawler.

the order of elements is not important, order changes should not be reported. Line
based tools do not know about the hierarchical structure at all and thus report them.

Depending on what the hierarchical data represents further restrictions may ap-
ply: For example, there may be elements with the same name in XML but not in file
systems. There may also be links, again in file systems between directories or the
XML XLink, transforming the former tree into a graph. Often these properties are
not only defined by the storage and exchange format, but by the concrete applica-
tion. Therefore, how the changes of this hierarchical knowledge should be modeled
depend on the application and vary significantly: One application may, for exam-
ple, only allow deletion and insertion of single, new elements. Other applications
may allow deleting whole sub-trees at once without additional cost. They may even
be able to move or even copy sub-trees efficiently. This wide range of possibilities
implies that any method which tries to solve this problem in general should be very
flexible to fit to the internal data model of the application in which it will be used.

Another obstacle in applications of such a method is the amount of data it has to
handle. Often it is not really necessary that the minimal amount of required actions
to transform one set of hierarchical data into another is found, but that this search
for such actions finishes in a reasonable, predictable amount of time. Looking at the
potential applications, a linear runtime seems reasonable.

v2

<chapter>
<title>An example</title>
</chapter>
<chapter>
<title>Text</title>
</chapter>

<chapter>
<title>An example</title>
<title>Text</title>
</chapter>

2a3,4
> </chapter>
> <chapter>

v1 GNU 
Diff

· Create a new chapter
· Move title to new 

chapter

What the user did

Figure 1.2: Differencing with a flat representation of hierarchical data is sometimes
not meaningful.
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1.1 Representing Changes

This work introduces a novel method to calculate an approximately minimal list
of actions to transform one tree into another in linear time. It will be configurable if
the data order should be considered important or not. The set of actions the method
can generate are configurable as well, such that one may allow the algorithm to
move sub-trees but not to copy them. Finally, the method will work on any kind of
hierarchical data given that it is supplied in a supported data format such as XML,
HTML or JSON.

1.1 Representing Changes

There are several ways to represent the changes in hierarchical data. They differ in
their usefulness in different application scenarios and their intuitiveness for human
readers, as well as how succinct they represent changes. There are three general
ways to represent the changes:

1. Show what did not change and is the same in both trees.

2. Show only what changed.

3. Define different operations on hierarchical data and represent the changes by
means of those operations.

If the changes are saved, e.g., in a file, we can then either save this information by
extending the existing data with change data, or by saving the change information
separately. Figure 1.3 shows two such representations.
There is no established standard or common practice, of how the changes should be
represented. We decided on representing them by operations, separate from the hi-
erarchical data in our method. This is most flexible as new operations can be easily
added, and comprehensible as we regularly perform those operations, e.g., when
we rename, move or delete folders. Most importantly the operations the method
produces can actually represent what the user did on the hierarchical data. Rep-
resenting the changes separately was chosen because this results in “tree patches”,
i.e., running the method on two trees A and B gives us a set of operations D, which
applied to A transforms the tree to B. Then, instead of storing both tree A and tree

A.xml

<a>
     c
</a>

B.xml

<a>
     d
</a>

Embedded Diff

<a>
<diff 
change="changed">
d</diff>
 </a>

Diff with Operations

<delta>
<update
node="/a[1]/
node()[1]" >d
</update></delta>

Figure 1.3: Different change representations. The left one extends the existing tree
with the change information. The right one represents the changes via
tree edit operations.
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1 Introduction

B, it is enough to store A and D. If the trees are not entirely different, less data is
stored.
Supporting the other change representations would not be much of a problem. Ac-
tually, in the method presented in this thesis we first calculate which nodes are the
same, and then need to invest additional work to transform this information into
a set of operations. Representing the operations in the trees is as straightforward
as applying them to tree A while modifying A in a way that makes clear what has
been modified and how (e.g., like in Figure 1.3).

1.2 Applications

Computing changes directly on hierarchical data instead of on a flat representation
has a wide range of applications. First, differencing and merging in revision control
on hierarchical data produces fewer differences if the algorithm takes into account
the hierarchical structure, compared to algorithms which dp mpt take the hierarchy
into account. Having to inspect fewer changes is one obvious advantage. This kind
of revision control system has itself a wide range of applications. For example, code
can be represented as a tree [7], making diffing in traditional revision control sys-
tems for code in certain programming languages better and smarter.
As most documents nowadays are XML documents and thus are already in tree-
form, changes in documents can be adequately modeled, calculated and displayed.
This includes documents in HTML or XML.
As a personal anecdote the author once tried to give an administrator of a CMS
system an automatically modified version of an XML document with only small
changes. The automated step sorted the attributes of the XML document alpha-
betically. The difference view in the CMS system considered each reordering as a
change and the administrator then refused to integrate the new version because he
could not see what actually changed. In this case a smarter differencing tool would
have been helpful.

It can also be useful for versioning of hierarchical data. By calculating a tree
edit script between two snapshots, one snapshot can be removed and the changes
saved more efficiently (similar to, e.g., [24, 8]). The change detection and correction
method XyDiff [31] is, for example, used in the Xylene [1] XML data warehouse.
Calculating the differences on the hierarchical data enables efficient storage, tempo-
ral queries and change control with change subscriptions.

A change detection and correction algorithm also enables an efficient synchro-
nization of distributed hierarchical data, where bandwidth is critical, e.g., with mo-
bile devices. Lindholm et al. describe a method [27], based on a tree edit script gen-
erating algorithm, which reconciles hierarchical data, i.e., data which is out of sync
and has to be merged. This could be of broad interest for peer-to-peer distributed
hierarchical databases.

Many more applications have been considered: Song et al. [45] and Hedeler et
al. [17] calculate tree edit scripts for genomic and proteomic data. Zhang et al. [51]
represent RNA structures as trees and calculate their distance. Images can be repre-
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1.2 Applications

sented as trees, then the change detection and correction algorithm can be used in
image analysis [6].

The following sections will show some use cases for calculating operations, which
transform hierarchical data into one another.

1.2.1 Importing XML Data into Databases

Business data is often exchanged in the form of XML. This data is often imported
into hierarchical databases or relational databases. Let’s say we have XML data de-
scribing the products of a company as in Listing 1. This XML file is generated hourly
by some internal system the company uses, but the company does not release new
products or change prices that often. A contractor gets the task of building a web
shop for the company selling the products. To generate the product pages they have
to import this XML file. They are used to relational databases and therefore parse
the XML file and put the products into a table. The Table 1.1 shows the database
table. The costumer wants product changes to show up in the web shop within the

<?xml version="1.0" encoding="UTF-8"?>
<Company name="Imaginary Products Co. KG">

<Products>
<Product>

<Name>Space Elevator</Name>
<Price>12.99</Price>
<Available>true</Available>

</Product>
<Product>

<Name>Teleportation Device</name>
<Price>39.99</Price>
<Available>true</Available>

</Product>
[...]

</Products>
</Company>

Listing 1: Example XML data an application may need to import

hour. The first solution they come up with is to hourly delete all rows in the table

CompanyID ProductID Name Price Available
1 1 Space Elevator 12.99 1
1 2 Teleportation Device 39.99 1
.. .. .. .. ..

Table 1.1: Table for the products in Listing 1

5



1 Introduction

and then to reinsert the products from the XML. They do this in a transaction such
that all other simultaneous processes can continue using the product table. After
some time, the company has a lot more products. Because the web shop supports
searches for names and price ranges, they had to add indices to the Name and Price
column. Deleting and reinserting everything seems like a terrible idea now, espe-
cially since the data does not change that often. If it does change, it is in the order
of changing the price of or adding one product.

Instead, one could save the old imported XML file and compare the new XML file
with the old one. With the method developed in this thesis, one could then extract
the changes between versions. Then one could read the changes and replay them on
the internal data model. If, for example, the price of Space Elevator changes from
12.99 to 13.99, the change detection algorithm would output something like /Com-
pany/Products/Product[1]/Price/node()[1] changed to 13.99. This would be easy
to translate to an SQL update statement. The index structures would only be up-
dated in parts which actually change. Of course the changes could also be detected
manually in this case, but for more complex examples this becomes difficult – and
a tool which solves this change detection problem in general more beneficial.

Newer relational database systems can directly handle XML data and can also
create indexes on fields. A method which can detect changes between versions of
XML data could therefore be directly integrated into a database system, such that
changes to the indices are kept minimal.

1.2.2 Remotely Mirroring Filesystems

Another use case is using the change detection algorithm on file trees for band-
width saving purposes when remotely mirroring filesystems, as may be the case
for backups or file synchronization. Let C be a client whose file system we want to
synchronize with the server S. The synchronization process may work like this:

• C sends its current file system tree to S

• S looks at the differences between the snapshot of the file tree it currently has
saved for C and the new tree it received.

• S loads all new and changed files from C and modifies the file tree on S such
that both trees are identical. Therefore, It creates an up-to-date snapshot of
C’s file system tree.

The problem appears if we want to avoid loading files from C and do not have
unique identifiers for files, such as a hash of their content (calculating the hashes
is costly – it involves reading all the file contents). The otherwise available infor-
mation like file name, size and last modification time are in general not enough to
identify files uniquely. As an additional factor, we can, however, take into account
the tree structure around the changed files. This is exactly what the method intro-
duced in this thesis does. It finds changes in hierarchical data, taking into account

6



1.2 Applications

the tree structure of the problem and produces exactly what S would need – namely
a list of operations to transform the old snapshot for C to the new one.

This can be seen in Figure 1.4, where the file tree on the server S is different from
the file tree on the client C. Several files and folders on C have been added, re-
named, deleted or moved. After receiving the file tree from the client, the server
can use the change detection and correction method developed in this thesis to cal-
culate the file tree differences. The server then has to execute only a few operations
to update the file tree for C, such that the file tree on the server is identical to the
file tree on the client.

1.2.3 Visualizing Changes on Hierarchical Data

The change detection and correction method tries to find a minimal list of operation
to transform one version of hierarchical data into another. This list of operations,
together with the affected locations in the hierarchical data can be shown to users,
if they want to see what changed between the versions. This can be useful where
changes to data or documents have to be reviewed, or where users simply want to
see changes to past versions. The changes can either be shown in a linearization
of the hierarchical data such as XML on a side-by-side basis or in an interactive
tree structure. One popular tool to do this side-by-side comparison is DeltaXML
[30]. A wide range of applications and companies using the product is listed on the
website.

DeltaXML does not detect nodes moved in the hierarchy, probably because it
would be difficult to show how the node moved in a side-by-side view of XML
files. For that purpose we have developed an application which visualizes hierar-
chal data and allows a step-by-step replaying of changes between two versions of
hierarchical data. A screenshot of this application is shown in Figure 1.5. It shows
an edit script, and the tree the edit script is operating on.

1.2.4 Reconciliating Distributed Hierarchical Data

Another use case is the reconciliation of distributed and simultaneously modified
hierarchical data. If, for example, the same document is changed simultaneously
by two clients, a common task is to merge the resulting documents such that the
changes of both clients are in a new common document. A differencing algorithm
working on hierarchical data is a basic building block towards such a merge/rec-
onciliation method. An example for how this could work on a basic document is
shown in Figure 1.6. There a document is distributed to two clients, which modify
it in a way that a normal line based merge tool could not handle without user inter-
vention. Taking into account the hierarchical structure of the documents increases
the number of merge cases which can be handled automatically.

7
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File tree on Server File tree on Client

/

home

Ralph Gerd

etc

fstab

1.txt x.txt

/

home

Ralph Gerda

etc

~fstab

x.txt y.txt

fstab

Tree correction
method with
trees as input

Tree edit script

· Rename “Gerd“ to “Gerda“
· Insert “y.txt“ below “Gerda“
· Rename “fstab“ to “~fstab“
· Insert “fstab“ below “etc“
· Move  “1.txt“ below “Gerda“
· Delete “2.txt“ below “Ralph“

Server actions

· Rename folder “Gerd“ to “Gerda“
· Download “y.txt“ from client and save 

below “Gerda“
· Rename file “fstab“ to “~fstab“
· Download “fstab“ from client and save 

below “etc“
· Move file “1.txt“ below “Gerda“
· Delete file “2.txt“ below “Ralph“

1.txt2.txt

Figure 1.4: Synchronizing a file tree to a server. By using a change detection and
correction method changes to the tree on the server can be kept small.
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1.2 Applications

Figure 1.5: Screenshot of the change visualization tool showing an edit script and
the tree it is operating on.
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1 Introduction

Base version

Quote 1.1

<paragraph>
Education is a admirable thing but 
it is well to remember from time to 
time that nothing that is worth 
knowing can be taught.
</paragraph>

User 1

Quote A

<quote>
Education is a admirable thing but 
it is well to remember from time to 
time that nothing that is worth 
knowing can be taught.
</quote>

User 2

<heading>Quote 1.1</heading>

<paragraph>
Education is an admirable thing, 
but it is well to remember from 
time to time that nothing that is 
worth knowing can be taught.
</paragraph>

Edit Script

· Change “Quote 1.1“ to 
“Quote A“

· Rename “paragraph“ 
to “quote“

Edit Script

· Put “Quote 1.1“ into 
“heading“

· Change “Education is a 
admirable thing but“ 
to “Education is an 
admirable thing, but“

Reconciliation script

· Put “Quote 1.1“ into 
“heading“

· Change “Quote 1.1“ to 
“Quote A“

· Rename “paragraph“ 
to “quote“

· Change “Education is a 
admirable thing but“ 
to “Education is an 
admirable thing, but“

Merged version

<heading>Quote A</heading>

<quote>
Education is an admirable thing, 
but it is well to remember from 
time to time that nothing that is 
worth knowing can be taught.
</quote>

distribute

diff

diff

mergeApply script

Figure 1.6: Example flow for the reconciliation of a distributed hierarchical docu-
ment with the help of a hierarchical change detection and correction
method after it was simultaneously modified.
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2 Preliminaries

2.1 Tree

A tree T is an undirected, acyclic, connected graph consisting of nodes V (T ) and
edges E(T ) connecting them. Additionally, the a tree commonly has a root root(T ),
which is one designated node of the graph, and which gives the nodes in the tree
a hierarchical relationship. The distance between two nodes n1 ∈ V (T ) and n2 ∈
V (T ) is written as dist(n1, n2) and is the length of the path between the two nodes
in the tree. The distance of each node n ∈ V (T ) to the root is the node’s level
(level(n) = dist(root(T ), n)) in the hierarchy. A tree’s depth is the maximum level
(depth(T ) = maxn∈V (T ) level(n)). The parent (parent(n)) of a node is the next node
on the path to the root, and a node’s children (children(n)) are all other directly
connected nodes. A trees degree is the maximum number of children of all nodes
(degree(T ) = maxn∈V (T ) |children(n)|). The siblings of a node are those nodes that
have the same parent. Even if sibling order is not important as per data model,
siblings still have an implicit order, i.e., we know which node is the leftmost sibling
and can use a child index – often also called child rank – to address such a node.
child(n, 0) would give us the first child of a node, child(n, 1) the second, and so on.
child rank(child(n, 0)) does then give us the child index 0, because child(n, 0) is the
first child of n. This can be seen Figure 2.1, which shows how every node with
parent can be addressed via child rank and parent. Given a node n we can also
find its left and right sibling (prev sibling(n) and next sibling(n)), given they exist.
A node without children is called a leaf node and a node with children an inner
node. Every node n is a root of a smaller sub-tree (we often say sub-tree rooted in
n). The sub-tree consists of all nodes connected to n after we remove the connection
between n and its parent. If a node p is in this sub-tree, it is a descendant of n and n
is an ancestor of p. By this definition a node is an ancestor and descendant of itself.
For situations excluding the node, we use the terms proper ancestor and proper
descendant. The least common ancestor of two nodes n1 ∈ V (T ) and n2 ∈ V (T )
is the node with the lowest level on the path from n1 to n2 in the tree. lca(n1, n2)
would be that least common ancestor.

The nodes in Figure 2.1 also have labels. Let n ∈ V (T ) be a node in the tree, then
l(n) would be the label of that node. It is a sequence of bytes and can be used to
name nodes or to save data in them. Additionally to the label, some applications
need a type t(n). The type distinguishes different classes of nodes, which have to
be handled differently.

The nodes in a tree can also be addressed by a unique identifier. If the labels in a
tree are guaranteed to be unique, we can use the labels as identifier as in Figure 2.1.
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A

CB E

F D

parent(C)

child(A, 0)
child(A, 2)

child(A, 1)

child(C, 0) child(C, 1)

Figure 2.1: Every sibling of a node can be addressed by its parent node and child
rank

As trees often do have nodes with same labels, we use pre-order numbers or XPath
as addressing schemes, which unanimously identify nodes. Examples for this can
be seen in Figure 2.2, where pre-order numbers are shown on the left hand side and
XPaths on the right hand side. In this example addressing by label would not have
worked, because there are two nodes with label “B”.

As in graph theory, two trees T1, T2 are isomorphic if there exists a bijective func-
tion f which maps all nodes V (T1) to V (T2), maps the root of T1 to the root node of
T2 (f(root(T1)) = root(T2)), and for which holds:

∀(x, y) ∈ E(T1) : (f(x), f(y)) ∈ E(T2) (2.1)

If trees are isomorphic including child order, the mapping f does not change the

A

BB E

F D

0

1 2

3 4

5

A

BB E

F D

/A[1]

/A[1]/E[1]

/A[1]/B[1]

/A[1]/B[2]/F[1] /A[1]/B[2]/D[1]

Figure 2.2: If labels are not unique nodes can be uniquely identified using for exam-
ple their pre-order number or XPath
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2.2 Tree Edit Scripts

order of any children, that is Equation 2.1 holds and:

∀(x, y) ∈ V (T1) : (parent(x) = parent(y) ∧ child rank(x) < child rank(y))

⇒ (parent(f(x)) 6= parent(f(y))

∨ child rank(f(x)) < child rank(f(y)))

2.2 Tree Edit Scripts

The tree-to-tree correction problem or the task of calculating a minimal tree edit
script between two trees is variously defined in the literature. The algorithm and
its result significantly depend on the valid operations on the trees and whether the
sibling order in the trees is important, i.e., the trees are ordered or unordered.

2.2.1 Basic Operations

An often used set of operations is rename, insert, and remove. Again, the specific
parameters vary, but insert and remove are often symmetric such that an insert
operation can revert a remove. An example for the edit operations with resulting
trees is given in Figure 2.3, where the operations are applied and reversed on one
tree. Let a be an address in an addressing scheme uniquely identifying nodes (e.g.,
labels, pre-order number, or XPath – unique address from now on), l a label, and s
and e integer numbers. Then the most flexible version of the basic operations can
be defined as

• rename(a, l) Changes the label of the node identified by a to l.

• insert(a, l, s, e) If the node identified by a has children c0, c1, ..., cn, insert adds
another node with label l as child before cs and changes the parent of cs, .., ce
to b, if e ≥ s.

• remove(a). Removes node adressed by a and attaches children(a) to parent(a).

A

CB E

rename(E, D)

rename(D, E)

A

CB D

A

C

B

D

insert(E, A, 1, 2)

remove(E)

E

Figure 2.3: Basic edit operations on trees
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A

CB E

F D

Same (no edit 
operations needed)

A

CB E

D F

Figure 2.4: Unordered trees are equivalent and require no changes, because the sib-
ling order is not important

2.2.2 Sibling Order

If the sibling order is not important, trees which would have previously required a
lot of changes, may now require none at all. With the unordered model, the trees in
Figure 2.4 are equivalent while the same trees with the ordered model require two
corrections in Figure 2.5.

2.2.3 Cost Model

Sometimes we not only want to minimize the number of necessary edit operations:
We want to minimize the tree edit script using a certain cost model for the opera-
tions. The model is an assignment of a certain cost to each operation. The simplest
cost model is a uniform one, e.g., by assigning the cost of 1 to each edit operation.
The cost is then the number of operations. In a non-uniform cost model we assign
different costs to operations. For example, we might make a remove cheaper than
an insert. If the cost does not change with the parameters of the operations, it is a
fixed cost model. A non-fixed model might be interesting in scenarios where some
nodes are more relevant or costlier to change than others. Most existing work uses
a fixed, uniform cost model.

A

CB E

F D

remove(E)
A

CB

F D

insert(E, A, 1, 0) A

CB E

F D

Figure 2.5: Ordered tree requires correction, because the sibling order is important
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2.2.4 Sub-tree Operations

It is often convenient to remove or insert whole sub-trees. Either because the un-
derlying application regards these operations as cheap, or simply because it makes
the tree edit script more compact. Let a be a unique address and s be an integer
number. Those operations are then defined as:

• subtreeInsert(a,B, s) Node addressed by a has children c0, c1, ..., cn. Insert tree
B before cs as sub-tree. B represents a whole tree, e.g., as XML.

• subtreeRemove(a) Removes the node addressed by a and all its descendants.

2.2.5 Move and Copy Operations

If for the application moving sub-trees is cheaper than removing and inserting
them, those may also be used. Copying sub-trees might also be cheaper than in-
serting sub-trees. Let a and b be unique addresses and s be an integer number:

• move(a, b, s) Let c0, c1, ..., cn be the children of a. Move the sub-tree addressed
by b such that its root is before cs with node addressed by a as parent.

• copy(a, b, s) Let c0, c1, ..., cn be the children of a. Create a copy of the sub-tree
addressed by b and insert it before cs with node addressed by a as parent.

2.3 Matching

A tree matching is a function which maps tree nodes from one tree to tree nodes of
another tree. Given such a matching, we can construct a tree edit script relatively
easy. The relationship between edit scripts and matchings is not unique: Given a
matching we can construct different edit scripts, whereas an edit script implies a
specific matching between the trees. The difference between those different edit
scripts is mostly cosmetic, however. The order of insert and remove operations
is, for example, not important. Therefore, since a matching is less ambiguous and
because it is more intuitive to construct, it is preferable to first construct a matching
and then transform this matching into an edit script instead of directly constructing
an edit script. A matching for two example trees with edit script is shown in Figure
2.6. One can probably also see that generating the edit script from such a matching
is relatively easy. We call the lines belonging to a matching, connecting the nodes
mappings (red in Figure 2.6). Nodes, which have no mapping inA, are deleted, such
as the node with label “I” in the figure. Nodes with no mapping in B are inserted,
such as the node with label “H”. Nodes with their parent in B not mapped to the
parent of the node they are mapped to in A are moved, such as the sub-tree rooted
in the node with label “E” and nodes which are mapped to nodes with a different
label are renamed, such as the node with label “B” on the left hand side. We discuss
how to transform a matching into an edit script in detail in Section 5.2.
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2 Preliminaries

A

B D E

F G

A

C

E

D

F G

H

I

· Rename B to C
· Move the sub-tree rooted in E 

below D
· Insert H below A
· Delete I

Figure 2.6: An edit script implied by a matching. The order of edit operations can
be changed in this example.

Mathematically, a matching between two trees A and B is a function M which
maps a subset of nodes S ⊆ V (B) to nodes in V (A).

M : S → V (A) (2.2)

If every node in A has maximally one node that maps to it (i.e., M injective), it is
implied by an edit script with insert, remove, rename, and move. If a node in A has
more than one node in B that maps to it, the implying edit script must use a copy
operation.

The best or optimal matchings are those implied by a minimum cost edit script.
If a single mapped node in M is not part of any best matching, we speak of a wrong
mapping. If it is part of a best matching, it is correctly mapped. Even if all nodes are
correctly mapped, the resulting edit script can still be not minimal because there can
be more than one best matching. We call a mapping which is part of one best match-
ing while the majority of matchings is part of another best matching, a disabling
mapping. Obviously, as this is an optimization problem, there are different grades
of wrong or disabling mappings. They may increase the cost of the edit scripts by
different amounts. Since we are interested in an approximately cost-minimal edit
script, we use methods that try to avoid mapping the wrong nodes to each other,
but can give no guarantee that they map correctly.

2.4 Approximate List Matching

We have two lists of elements which are comparable LA = (A1, A2, . . .) and LB =
(B1, B2, . . .). For the sake of simplicity let their sizes be equal: |LA| = |LB| = n.
Then there is a preference matrix P ∈ Rn×n which tells us how good mapping a
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single element to another may be, e.g., PA1,B1 returns how good mapping A1 and
B1 would be. Numbers are smaller for a better mapping, zero denotes a perfect
mapping. Let M be all functions which map elements from LB to elements in LA.
For an optimal matching m ∈ M , the sum of all preferences should be minimal
(arg minx f(x) := {x|∀y : f(y) ≥ f(x)}):

M0 = arg min
m

n∑
i=1

Pm(Bi),Bi
(2.3)

In literature this problem is a variant of the marriage matching problem [15]. The
full marriage matching problem has two preference matrices one for how much
elements in LA (men) prefer elements in LB (women) and one for the other way
around. Here, we have only one, i.e., the preferences are considered to be symmet-
rical. The name suggests one application: Matching men to women for marriage
with globally stable outcome. More useful applications exist for example in eco-
nomics where, e.g., resources are efficiently allocated to consumers. In fact, the
2012 Nobel prize in economics was won for an application of the stable marriage
problem. In this thesis it will be used to map sub-trees.

In the simplified case with only one preference matrix, the optimal solution can
be found by enumerating all possible matchings and selecting the best. This has an
often prohibitive runtime in O(n!). If we are satisfied with a heuristic solution, we
can find a matching using a greedy method: We sort the preference matrix such that
we can iterate over it getting the best mappings first.

Figure 2.7 shows an example for this. While iterating over the sorted result, we
map the two elements to each other if both of them are not mapped. In the example,
we first get (A1, B2) and map them. Then we get (A1, B3), but we cannot map,
because A1 is already mapped to B2. Next would be (A3, B1) which we again map
to each other.

This greedy matching method requires us to sort the preference matrix and thus
runs in O(n2 log n). If we want a heuristic method with non-quadratic runtime, we
have to avoid looking at all the O(n2) entries of the preference matrix. Let us select
a threshold t below which mapping two elements is “good enough”. For every
element in LB we look at a constant amount c of random unmapped elements in
LA. Let Ai and Bj be the current considered mapping candidates. If P (Ai, Bj) < t,
we map the two elements. The runtime complexity of this method is O(n). The
resulting matching can be, however, very bad. Contrary to the methods before this
marching method does also lead to outcomes where elements remain unmapped.
We call it opportunistic matching.
It is used in practice: Since the lifetime of a human is limited, he can only look at
a limited amount of unmarried partners and marries the partner he is looking at if
the preference is below t. This leads to inefficiencies such as divorces if he later on
finds a better partner. The greedy solution would be much more efficient1.

1This judgement assumes that the amount of resources spend on computational power for a better
allocation of men to women is less than the amount of resources spent on divorces and the loss of
resources (e.g., labour) created by unhappy marriages and thus would be overall more efficient.
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B2

4

B1 B3

A1

A2

A3

3 0 1

5 2

1 6 4

sort

(A1,B3,1)

(A3,B1,1)

(A2,B3,2)

(A1,B1,3)

(A1,B2,0)

(A3,B3,4)

(A2,B1,5)

(A3,B2,6)

(A2,B2,4)

Figure 2.7: Example for how the preference matrix is sorted into a list such that the
best mappings come first.

2.4.1 Top-down Matching

We have two trees A and B that have no two siblings with the same label and the
same parent. This is, for example, the case in file systems, where one cannot create
files or folders with the same name, given they are in the same folder. Then, a
matching method would be to start at the root and to map nodes with the same
label and type2 to each other. If a node is mapped and is not a leaf node, the same
matching method is recursively applied to its children and so on. When using this
method, if a node’s label is changed, the whole sub-tree starting at this node is not
mapped anymore, such as in Figure 2.8 where no node in the sub-tree rooted in the
node with label “E” on the left hand side is mapped, because the label changed.

While this is an obvious disadvantage, this does not happen too often in most
cases: Nodes relatively close to the root node are often changed infrequently. This

2In the filesystem case there are two types: Files and folders.

A

DB E

GF

A

DB C

GF

Figure 2.8: Example top-down matching, where a sub-tree is not mapped because a
label changed.
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pattern may even be an imposed constraint: If we look at file systems, changing
folder names close to the root would invalidate many file system links and configu-
rations and, as such, it is done only reluctantly. Similarly with XML data exchange,
where modifying labels of leaf nodes is often supported by all involved applica-
tions, contrary to modifying element names in the upper levels of the hierarchy.
This assumption – that the closer the nodes to the root, the more infrequently they
are changed – may, however, not hold if presentation and data are not well sepa-
rated. This is, for example, the case with HTML. If positioning an article or changing
the layout necessitates an additional div container, such a straightforward approach
is not able to map it anymore.

If we allow siblings with equal labels and same parent, the top-down method
runs into some problems. Before, the label was an indication that nodes had similar
sub-trees. This assumption is weaker now: Let’s say we have two siblings with the
same label. The algorithm maps them by looking at the order. As long as we do
not change the order, everything is satisfactory. If we change the order the wrong
sub-trees are mapped to each other, which causes larger edit scripts – see Figure
2.9, where the order of the node with label “D” is changed, which causes an oppor-
tunistic top-down matching, which maps to the first node with the same label, to
incorrectly map the nodes. We have three possible remedies for such a situation:

1. Do not map nodes which have siblings with same names in either version of
the tree to each other.

2. Map them only to each other if all nodes in both sub-trees are mapped to each
other afterward.

3. Consider a mapping to all siblings with the same label and then map to the
one with most sub-tree mappings.

While possibility two would work in Figure 2.9, it would fail if there were any
changes. Possibility three does, however, result in a unusually high runtime com-
plexity, as every sibling has to be compared to each sibling with the same name

A

DB D

GF

A

DB D

GF

Figure 2.9: Example top-down matching, where nodes with same label are mapped
incorrectly.
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– potentially n of those. The complexity when resolving this using opportunis-
tic matching would then be O(n) – with the result potentially harmful, for greedy
matching O(n2 log n). We use possibility one for our approach and take care of the
remaining unmapped sub-trees in other matching steps. Let A and B be two trees.
Let M : V (B) → V (A) be the produced matching which maps nodes from B to A.
The top-down matching algorithm which handles cases where the matching M is
already partially populated by other matching methods then works like this:

Algorithm 2.1. Top-down matching

1. Set a = root(A) and b = root(B)

2. Iterate over the sorted list (lexicographically by label) of children of a and b. Let ca be
the current child of a and cb the current child of b.

• If ca is already mapped (M−1(ca) is set), advance ca.

• If cb is already mapped to a node with parent a (parent(M(cb)) = a), recursivly
go to 2. with a = M(cb) and b = cb. Advance cb.

• If cb is mapped to a node with parent(M(cb)) 6= a, advance cb.

• If the labels and type of ca and cb are the same (l(ca) = l(cb) and t(ca) = t(cb))
and if there is only one child of a with label l(ca) and type t(ca) and one child of
node b with label l(cb) and type t(cb), map the two nodes and recursively go to
2. with a = ca and b = cb. Advance ca and cb.

• If the label of ca is lexicographically smaller than the label of cb (l(ca) < l(cb)),
advance ca.

• If the label of cb is lexicographically smaller than the label of ca (l(cb) < l(ca)),
advance cb.

It can be implemented more efficiently using hash tables because then the runtime-
dominating sorting can be avoided. It would consist of a step where we put the
children of a into a hash table with the label as key and a step where we iterate over
children in b, looking up the current child by label in the hash table and mapping it
to the child of a if found there. We used variant without hash table because some
applications, such as the filesystem example, exhibit trees that have already sorted
siblings.

2.4.2 Bottom-up Matching

Bottom up matching methods first match leaf nodes and then consider other nodes
higher up in the hierarchy. Contrary to the top-down matching, where a node can
only be matched if all its ancestors have been matched, a bottom-up matching can
only match a node if all its descendants have been matched.

Definition 1 (Bottom-up Matching). In a bottom-up matching, for tree A and B, if
node a is mapped to node b, all children ca1, ca2,... of a are mapped to children cb1,
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cb2, ... of b. In an unordered bottom-up matching any child of node a can be mapped
to any child of node b. In an ordered bottom-up matching children of a have to be
mapped to children of b with the same child rank.

This matching is very sensitive to changes in the lower levels of the hierarchy: One
change in a node prevents all its ancestors from being mapped. That is, if a leaf
node label is changed, all ancestors of that leaf nodes cannot be mapped anymore.
This can be seen in Figure 2.10 where the node with label “E” on the left hand side
is changed, causing both the nodes with label “A” and “C” to be unmapped.
Let A and B be the trees we want to match and h be a hash table, which maps labels
to a set of nodes. Let all nodes in tree B be unmarked. Additionally, we can save
a set of mapping candidate nodes for every node in B. For an ordered matching,
a simple algorithm producing such a matching, which first produces mapping can-
didates for nodes in B and then selects the final matching from those candidates
works like this:

Algorithm 2.2. Top-down matching

1. Set n = 0.

2. Collect nodes having maximal distance n from any leaf node in tree B and put them
into hash table h, keyed by their label. Nodes for n = 0, n = 1 and n = 2 are shown
in Figure 2.11 in an example.

3. Iterate through all nodes with maximal distance n from any leaf node in tree A. Let
the current node be a.

• If l(a) is found in h, iterate over the set h[l(a)]. Let b be the current node: If all
children of a are mapping candidates of children of b add a as mapping candidate
to b.

4. If more than zero nodes with maximal distance n from any leaf node were found, set
n = n+ 1 and go to 2.

A

B D E

F G

A

B C D

F G

Figure 2.10: Example bottom-up matching
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5. Iterate through all unmarked nodes in B in pre-order. Let b be the current node:

• If b has mapping candidates, map the current node and its whole sub-tree to the
sub-tree of the candidate with lowest pre-order number. Mark all nodes in the
sub-tree in B.

This is similar to the method described in [47] by Valiente. In Figure 2.11 this
method would correctly map the smaller sub-tree rooted in the node with label “A”
on the left hand side to the same sub-tree on the right hand side. The rightmost
node with label “D” on the right hand side is correctly mapped, because the pre-
order number of the node being mapped to is lower than the pre-order number of
the wrong mapping candidate.

An example output of this algorithm can be seen in Figure 2.12, which shows all
the mappings that a bottom-up method can produce. The node with label “E” on
the left hand side can, for example, not be mapped to the node with label “E” on
the right hand side because its child was renamed. The node with label “D” cannot
be mapped because it was renamed. This prevents us from mapping the node with
label “A” because not all children of “A” were mapped.

Valiente et al. claim that this is easily extensible to unordered matching and that
the complexity of such an algorithm is O(n). Looking close, the algorithm he de-
scribes in [47] seems to have O(n2) in degenerated cases (e.g., if the root node has
O(n) children) and is only extensible to unordered trees with unique child labels.
If there are no nodes with the same label and same parent, our bottom-up matching
algorithm can also be applied to unordered trees if the children are sorted before
being compared in step 3. Extending the algorithm to work without this restriction
would be difficult as then sub-tree permutations would have to be considered. We
did not use this method as hash matching is easier, faster, and produces the same
results. It does not have problems with nodes with the same label and parent. We
will also extend the hash matching to handle unordered trees.

2.4.3 Hash Matching

Instead of using the relatively complicated bottom-up matching, one can use a hash
matching algorithm. The result is the same, but there is a small (negligible) chance,
that wrong results are produced, due to hash collisions.

Hash Matching for Ordered Trees

Doing a matching with the aid of sub-tree hashes is easier with ordered trees, than
with unordered trees. If one imagines, e.g., an XML representation of a tree, the
ordered sub-tree hash would simply be a hash of the part of the XML file in which
the sub-tree is described. This is only a way of thinking about it. We did not actually
do it. Obviously, trees can be represented by XML and XML by a tree (one way to do
that is described in Section 5.1.1). Because every node in a tree represents a smaller
(sub-)tree as well, every sub-tree can be represented by XML. XML is a string of
characters which can be hashed. Sub-trees with equal hashes are then isomorphic
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C

B A D

F D

A

B A D

F D

Figure 2.11: Candidate mappings during the bottom-up matching algorithm.
Nodes considered with n = 0 are red, those for n = 1 blue and those for
n = 2 green. The coloring for the candidate mappings is the same.

A

B D E

F G

A

B C E

F GH J H I

Figure 2.12: Example bottom-up matching produced by the algorithm. The node
with label “E” cannot be mapped because its child was renamed.

23



2 Preliminaries

including child order, in the same sense that XML files which are identical describe
the same tree. If we start trying to map with decreasing sub-tree size, a bottom-up
matching will be produced.

The calculation of the sub-tree hashes can be done directly by an iteration in post-
order over the tree. The post-order traversal first processes the children and then
their parent. Therefore, every time we process a node the sub-tree hashes of the
children are already available. This is shown in Figure 2.13.
Let h be a hash map which maps sub-tree hashes to a set of nodes in which those
sub-trees are rooted. Let Q be a priority queue working on tree nodes. Nodes with
larger sub-tree size have higher priority. Let sh(n) denote a function which returns
a sub-tree hash for a sub-tree rooted in n. This sub-tree hash is calculated as already
described and stored in the node. The hash matching algorithm for two trees A and
B works like this:

Algorithm 2.3. Hash matching ordered trees

1. First calculate hashes for all sub-trees in tree A and put them into hash table h with
the hash of the sub-tree as key and the root of the sub-tree as value.

2. Calculate the sub-tree hashes in tree B.

3. Enqueue the root node of tree B in priority queue Q.

4. Dequeue a node n representing a sub-tree from Q and look up in the hash table h if
there are isomorphic sub-trees in A.

• If an isomorphic sub-tree was found, map the whole sub-tree to an unmapped
one in the set h[sh(n)].

• If it was not found en-queue all children of n to Q.

5. If Q is not empty, go to 4. else terminate.

Using the priority queue prevents small trees from being mapped first. Fixing those
mappings first would have a high chance of producing disabling mappings and
thus to incorrect results.

Definition 2 (Maximal bottom-up matching). A bottom-up matching (Definition 1)
with a maximum number of mapped nodes, i.e., there is no other bottom-up matching which
maps more nodes.

The hash matching algorithm produces a maximal bottom-up matching : If it would
not produce one there would either exist an unmapped node in A with its sub-tree
being mapped to a sub-tree in B with unmapped root node. Obviously, as this is a
bottom-up matching, whole sub-trees have to be mapped. Having a non-maximal
bottom-up matching would mean there is a sub-tree which could be mapped, but
is not or that mapping a smaller sub-tree disabled a better bottom-up matching. As
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A

B D E

F G

h( hb || hd || he || h(A) )

h( hf || hg || h(E) )=he

h(G)=hg

h(F)=hf

h(D)=hd

h(B)=hb

Figure 2.13: Calculation of sub-tree hashes (|| concatenates the string representation
of the hashes, h is the hashing function, which hashes the node’s con-
tents. If we have nodes with labels and types h(n) = h(l(n)||t(n))

the algorithm guarantees 3 to look at every unmapped node – looking at nodes with
larger sub-trees first4 – this node would have been discovered and mapped.

Hash Matching for Unordered Trees

Matching unordered trees via hashes can be done using hashes insensitive to child
order changes. This can be done using a commutative operator instead of the con-
catenation (||). See Figure 2.14, where the sub-tree hashes are calculated using the
commutative operator +, i.e., the sub-tree hash of each node is the sum of all sub-
tree hashes of its children plus the hash of its label.
Let h be a hash map which maps sub-tree hashes to nodes in which those sub-trees
are rooted. Let Q be a priority queue working on tree nodes. Let sh(n) denote a
function which returns a sub-tree hash for a sub-tree rooted in n. This sub-tree hash
is order invariant and calculated as already described and stored in the node. The
matching algorithm for two trees A and B would then work as follows:

Algorithm 2.4. Hash matching unordered trees

1. Calculate all unordered hashes for all sub-trees in A and put them into hash table h
with the sub-tree hash as key and the root node of the sub-trees as value.

2. Calculate the unordered hashes of tree B.

3. Enqueue the root node of tree B in priority queue Q.

3The algorithm enqueues the root node of B in Q. Sub-trees rooted in children of nodes in Q
are either mapped to identical sub-trees in A or enqueued in Q. Because Q is empty when the
algorithm terminates every node has been considered.

4Every node is first enqueued in the priority queue Q, which returns nodes with larger sub-trees
first. Because the sub-tree size of every parent is obviously larger than that of its children and
because Q returns nodes with larger sub-tree size first, Q returns nodes with larger sub-tree size
first.
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A

B D E

F G

h( hb + hd + he + h(A) )

h( hf + hg + h(E) )=he

h(G)=hg

h(F)=hf

h(D)=hd

h(B)=hb

Figure 2.14: Calculation of sub-tree hashes (h is the hash function hashing variable
sized byte representations of integers or strings to a fixed size bit se-
quence, + adds the bits returned by the hash function)

4. Dequeue a node n representing a sub-tree from Q and look up in the hash table h if
there are isomorphic sub-trees in A.

• If there are such nodes, map an unmapped node a ∈ h[sh(n)] to n using the
algorithm below (Algorithm 2.5).

• If there are no such nodes, enqueue all children of n in Q.

5. If Q is not empty go to 4. else finish.

Mapping sub-trees is more complicated because sub-trees are only isomorphic ex-
cluding child order.

Algorithm 2.5. Mapping sub-trees isomorphic exluding child order

1. Map the current node a in A to n in B.

2. Iterate over all children of n. Let c be the current child:

• Find a node k in h[sh(c)]5 which is unmapped and has parent a.

• Recursively call this algorithm with k and c as paramters.

2.5 Grams

The concept of grams is widely used to convert sequences of elements of variable
length into another representation – a list of grams – which facilitates calculating
the similarity of those sequences. Often the name gram is preceded with the num-
ber of elements in the sequences which build on of those n-grams. The 2-grams of
the sequence of characters Hello!, would, for example, be {He, el, ll, lo, o!}. Having
such a representation, we can calculate the similarity between different words by

5The two sub-trees being mapped are isomorphic, therefore such a node can always be found
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measuring how many grams are the same normalized by the total number of dif-
ferent grams. The string Helo would have grams {He, el, lo} and would be similar
because it has three grams in common out of five different grams. If every character
can be represented with one byte, such a 2-gram is essentially a 16bit number. We
have reduced the task of finding a similarity measure on strings to the task of count-
ing how many numbers two sets have in common, which is both computationally
more efficient and easier to do, than doing it directly on strings. One can apply this
concept of grams on trees as well, transforming the task of finding a tree similarity
measure to the task of reducing a tree to a gram representation.
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3 Related Work

Looking at the problem at a wider scope, there a great deal of related work. One
may, for example, be able to modify methods which only calculate the number of
operations needed to transform one tree into another (tree edit distance) in such a
way that it calculates the associated operations as well. Then there are other meth-
ods which calculate tree edit scripts. They often have only a limited set of oper-
ations, e.g., only few support the copy operation and most of them work only on
ordered hierarchical data. Some of them are XML specific, which should not be a
problem as one can abstract the underlying method to arbitrary tree structures – but
some use stronger assumptions and use XML IDs or only map XML elements with
same paths to each other, causing them to be inapplicable in the general cases.

3.1 Tree Edit Distance Measures

Tree edit distance methods compute the number or cost of edit operations necessary
to transform one tree into another. Those methods do not produce a list of opera-
tions to transform the tree, but only a number representing the effort one needs
to transform it. Nevertheless, exact algorithms usually simulate the application of
operations such as insert and remove, they just do not keep track of them.

3.1.1 For Ordered Trees

Ordered trees are trees where the sibling order of elements is important and where
changing it results in tree distance increases. One may further classify existing tree
edit distance methods by the operations they consider. Move and copy operations
do, however, make the problem significantly harder. The only known exact meth-
ods with polynomial runtime work only with insert, remove and rename opera-
tions, which are the operations considered as basic.

Exact Methods

Early on Zhang and Sasha [51] presented an exact algorithm which computes the
edit distance between ordered trees. Its worst-case runtime is
O(|T1| ∗ |T2| ∗min(depth(T1), |leaves(T1)|)∗min(depth(T2), leaves(T2))). With |T1| and
|T2| being the number of nodes in the respective trees and depth(T ) and |leaves(T )|
the depth and the number of leaves of the trees. Thus, if the number of nodes is
n = max(|T1|, |T2|) (we assume this definition of n in the rest of this chapter) and the
tree is balanced such that the depth is d = log(n), Zhang and Sashas algorithm runs
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inO(n2 log2 n). This algorithm still has a worst case runtime ofO(n4) for unbalanced
trees, however. Klein et al. [22] improved this to a worst case runtime ofO(n3 log n).
Dulucq et al. [13] presented an algorithm with same worst case runtime but less
average runtime. Recently Demaine et al. [12] defined the class of decomposition
methods, which all the previous algorithms belong to, and presented an algorithm
with worst case runtime of O(n3) in this class. The best case and average time
runtime is O(n3) as well, though, so this still left room for improvement: RTED [37]
has the same worst case complexity, but improves on the average runtime and thus
beats all previous algorithms in all tree configurations.

By restricting the operations one can make the problem easier and the worst case
complexity better. Those methods yield a distance which is always bigger than the
tree edit distance without those restrictions. For example, Zhang introduced the
constrained ordered tree edit distance [53] where distinct sub-trees are mapped to
distinct sub-trees 1 This is done with worst case complexity O(n2). The alignment
distance considers instead the problem of aligning two trees 2. This can be done in
O(n2) [20] if the degree (maximum number of children) is bounded. Contrary to the
alignment distance of strings, however, this alignment distance can be bigger than
the tree edit distance and thus can only be used as an approximation. Selkow’s algo-
rithm [42] can only delete and insert leave nodes, is a top-down matching method,
and runs in O(n2). A bottom-up distance for trees is a distance which guarantees
to map all children of mapped nodes. Thus, if, for example, leaf nodes change, its
parent cannot be mapped any more – but it can be done efficiently in O(n) [47].

Zhang’s method has been extended with operations on whole sub-trees (previ-
ously mentioned as subtreeRemove and subtreeInsert in [4]. The complexity re-
mains the same. Exact methods with move or copy operators have not yet been
proposed – those operations would probably increase the complexity significantly.

Approximate Methods

Because computing the exact tree edit distance is costly, and often prohibitively so,
there is a strong incentive to approximate it. Often these approximations can be
shown to be strictly smaller or larger than the exact distance. Then they can be used
as a filter when one searches for a similar tree within a certain distance3.

One of the simplest approximation methods is using the string edit distance be-

1More formally, for a constrained mapping M which maps nodes of tree A to nodes of tree B, it has
to hold for every three mappings M(a1) = b1,M(a2) = b2,M(a3) = b3 that lca(a1, a2) is a proper
ancestor of a3 iff lca(b1, b2) is a proper ancestor of b3.

2Two trees can be aligned by first adding dummy nodes such that they are isomorphic when la-
bels are ignored. The alignment distance is then the number of labels which differ if the two
isomorphic trees are overlayed.

3Let the task be to find trees with edit distance t from tree T . Let de be the exact distance from T
to another tree. If we have a distance measure which is faster than calculating the exact distance
and which calculates distances du which are always greater than the exact distance (du ≥ de), we
can avoid calculating this exact distance for trees for with du ≤ t. Having tree edit distances dl
which are strictly smaller (dl ≤ de) and faster to calculate than the exact distances, allows us to
exclude trees quickly from the similarity search if dl ≥ t.
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tween the pre- and post-ordered tree labels, e.g., presented in [16] as lower bound4.
The string edit distance can be computed in O(n2). This gives a distance which is
strictly lower than the exact distance – two different trees can have the same list of
pre-ordered labels, as not every change in the tree structure has to cause a change
in the label list.

Another strictly smaller approximation is the binary branch distance [50]. It con-
verts trees with degree greater than two into binary trees. Those binary trees are
then serialized to strings, which are then separated and put into lists, similar to q-
grams for strings. Every tree is then represented by a list of tree-grams – in this case
every node in the binary tree with its two children. Comparing the list of grams of
different trees is more efficient, especially if those grams are hashed prior to com-
paring them. Again, two trees can have the same representing grams and still differ.

With p,q-grams [3] this concept of “q-grams for trees” becomes more flexible. In
this work the grams are constructed using the ancestor relationship (configurable
by p) and the sibling relationship (q). The method decomposes larger trees into very
small trees with depth p+ 1 and q leaves. Each of these small trees is then serialized
to a string and hashed. A list of these hashes represents the data in the tree and its
hierarchical relationships. The algorithm calculates the p,q-grams inO(n log n) time
and O(n) space. The distance is shown to be an approximation and lower bound to
the fanout weighted tree edit distance, i.e., the tree edit distance where the cost of
each editing operation is weighted by the respective number of children of the node
on which the operation works.

3.1.2 For Unordered Trees

If the order of siblings is not important, finding the exact tree edit distance becomes
MAX SNP-hard [55]. Another example from this complexity class is MAX-3SAT. It
is the problem of finding the boolean variables which satisfy the maximum amount
of clauses in a conjunction of disjunctions of three variables (the disjunctions are
the clauses). This is harder than NP where one just has to find one solution. Max-
imizing the number of satisfied clauses requires one to enumerate all solutions. A
simple approximation within 0.5 for MAX-3SAT: Set all variables to true and count
the number of clauses that are satisfied, then set all variables to false and count the
number of satisfied clauses. Output the one with more satisfied clauses as the solu-
tion. Since every clause is either satisfied if all variables are true or if all variables
are false, at least half of the clauses are satisfied in one case. Therefore, problems
in this class can be approximated within some constant ratio, but not within an ar-
bitrary one. This means that we can neither parametrize the quality of the result
of the approximation method, nor run the method until some quality or time limit
is reached. The estimation ratio is inherent in the method used, if and only if the
method is polynomial and P 6= NP . This implies that all algorithms with run-
time in P cannot generate an unordered tree edit distance within (1 + ε) times (with

4 The edit distances strictly greater than the tree edit distance are also called upper bounds. The
edit distances strictly smaller lower bounds.
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ε > 0) of the exact unordered tree edit distance. Instead, they may, for example,
only generate approximations that are, e.g., within 1.5 times of the exact distance.

Zhang et al. [44] presented an enumeration based exact algorithm for the un-
ordered tree edit distance which runs in O(n316n). As this is clearly impractical, he
simultaneously presents a heuristic solution based on searching in the enumeration
space. The algorithm starts with a matching which maps sub-trees of same sizes.
This mapping is then randomly improved by an iterative search method. Simu-
lated Annealing is used to overcome local maxima. As the possible number of con-
secutive mappings in each state is bounded by O(n2), this is nevertheless not very
efficient for larger trees. In this case, they propose only using the initial heuristic.

Again, the operations can be constrained, such that disjoint sub-trees are only
mapped to disjoint sub-trees. In this case, it can be solved in polynomial timeO(n2)
[54] if the maximum number of children of all nodes is bounded. The alignment
distance can be calculated with the same complexity under same conditions [20].
Valiente et al. claims that the bottom-up distance can be adapted easily to work on
unordered trees. The complexity seems then to increase to O(n log n), however.

By sorting the siblings lexicographically by label, prior to the pq-gram construc-
tion, the concept of pq-grams can be adapted to unordered trees. This is done in [2],
is shown to be a quite good approximation, and runs in O(n log n).

3.2 Tree Edit Script Producing Algorithms

This section will consider pre-existing methods which produce tree edit scripts, i.e.,
a list of operations which transforms one tree into another, whereas previously only
the cost of such a script was important. Again the complexity of this depends on
the data model (unordered or ordered) and the operations allowed to transform the
trees.

3.2.1 For Ordered Trees

Even though they only calculate tree edit distances, most exact algorithms men-
tioned in Section 3.1.1 can probably be extended to produce the accompanying tree
edit script without any increase in complexity: All these approaches use dynamic
programming and produce anO(n2) table of distances between sub-trees of the two
trees. By tracing the best result in that table in a post-processing step the tree edit
script could then be recovered in O(n2) without increasing space complexity5. The
overall worst case complexity would still be O(n3), however.

Again, one can restrict the edit operations’ power. In [7] insert and remove only
work on leaf nodes. With such restricted operations deletion of a non-leaf node
would lead to deletion and insertion of whole sub-trees, making the reduction in

5There is an implementation for this for the Zhang and Sasha [51] algorithm; For the other methods
this is a conjecture. Other publications hand-wave this problem.
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operation power more severe than the other power reductions like the align dis-
tance or the constrained ordered tree edit distance. The complexity is O(n2) and
thus as good as the align distance and the constrained ordered tree edit distance.

With Move Operator

The addition of a move operator makes the problem significantly harder ([31] claim
by citing [52] that it does make it NP-hard, but the cited paper only proves this for
unordered trees, so the claim is unproven). Therefore, only approximate methods
have been developed. [10] imposes some restrictions on hierarchical documents
such that there is a strict hierarchical order between labels: The example given are
LATEX documents where, e.g., a subsection is always in a section. The matching algo-
rithm is a bottom-up one, which uses a heuristic optimized for text. As a bottom-up
tree edit distance, this is sensitive to changes, e.g., in the leaf nodes. [25] extends this
work and removes the hierarchical order restriction. Both have complexity O(n2).

One successfully applied concept is that of tree hashes. By calculating a unique
hash for each sub-tree – which can easily be done – those sub-trees can be found
in other places by hash look-ups if they have not changed. This can be compared
to the already mentioned bottom-up distance calculation, but is faster if there are
only few changes. XyDiff [31] uses this method and then goes on to map nodes
to each other, which are in the vicinity of nodes mapped by the tree hashes. For
example, it may map the parent of a sub-tree mapped via hashes to the parent of
the mapped node, if the label of that parent in the first and second tree are the
same. The overall algorithm runs in O(n log n) and produces good results if larger
unchanged sub-trees are present. Producing an ordered tree edit script actually
requires an additional reordering step here. By removing this step one can use the
same approach for unordered trees.

Diffxml [33] implements the previously mentioned bottom-up method with hier-
archical order restriction [10] and another previously mentioned method [7], where
the insert and remove operations are restricted to leaf nodes. Both methods are
by Chawathe et al. Additionally to the rather dubious choice of algorithms the dif-
fxml implementation is flawed and fails its own test cases. With treepatch [23] the
patch format gets extended and the shortcomings mentioned, but not fixed. Unfor-
tunately, diffxml is the first result on Google if one searches for “xml diff”.

In [39, 26, 27] a three-way merging algorithm for XML is described, which in-
cludes an algorithm for calculating diffs between XML documents (3DM). It works
in a bottom-up fashion, mapping trees using their content. It also uses the neigh-
bourhood of tree nodes to produce mappings, thus if the left and right siblings of a
node are mapped to each other it assumes that the node in-between is in between
the mapped nodes of those siblings. The algorithm has worst-case complexityO(n2)
and O(n log n) if changes between trees are small.

In [49] it is assumed that one can find a key for each node that does not collide
with the keys of its siblings. Nodes are then mapped only to siblings. This can be
done in O(n), but the result may be really bad compared to other methods because
the tree structure is not considered at all – it is basically a top-down label matching.
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The algorithm also only detects moves to siblings. By removing the reordering step
via those move operations, this method also works for unordered trees.

3.2.2 For Unordered Trees

As mentioned, some methods in the previous section can be adapted, such that
they work on unordered trees as well. There are some specialized algorithms as
well, however.

One of the earliest such works is MH-DIFF [9]. It first considers all possible map-
pings between the two trees. Then those mappings, which obviously can only in-
crease the cost, are pruned. The problem is then reduced to a bipartite weighted
matching problem by assigning an approximate cost to each possible mapping of
each node. The overall algorithm has complexity O(n2 log n). Most effort is spent
in the pruning phase. As the method emits update, insert, remove, move and copy
operations, it is similar to the work presented in this thesis, its time complexity is,
however, quadratic, whereas ours is linear on average.

In [48], a method without move and copy operations and insert and remove oper-
ations which are restricted to leaf nodes, only nodes with the same path are mapped
to each other, i.e., nodes can only be mapped to other nodes if all ancestors of both
nodes have the same labels. This reduces the search space in such a way that the
worst case complexity is O(n2) if the maximal number of children in both trees is
bounded. As previously discussed, restricting operators on leaf nodes sometimes
leads to a severely inflated tree edit script. The additional path restriction does not
add to script quality as well. The work does, however, introduce the concept of
a tree hash that is invariant to the sibling order and thus quite useful. It is used
to reduce the runtime of the algorithm in cases where changes between trees are
small. It is not used, like in other algorithms, e.g., XyDiff, to produce a bottom-up
mapping. The average runtime of this method is improved in [45] with regards to
hierarchical biological data. The worst case complexity is not improved.

3.3 Summary

Table 3.1 shows all the available (i.e., online as download) tree diff tools, which we
could test and which could be considered competitors to the method described in
this thesis, with accompanying academic work, their properties and shortcomings.
Of the few methods only XyDiff has linear complexity. It has a solid implementa-
tion in C++ and Java as well. The other methods are all quadratic in runtime. All the
methods produce only approximately minimal tree edit scripts. Matching quality
and runtime have been evaluated in [40, 17]. We compare the methods listed here
with our own method in Section 6.4.
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Tool Worst-
case
complex-
ity

Supported oper-
ations

Ordered/
Un-
ordered

Comment

X-Diff[48] O(n2) insert, rename,
remove

Unordered No move support, long
runtimes

3DM[39] O(n2) insert, rename,
move

Ordered Implementation emitted
no move or delete opera-
tions. This caused wrong
edit scripts.

DiffXML
[33]

O(n2) insert, remove,
rename, move

Ordered Excessive amount of edit
operations even for sim-
ple changes. Slow for
larger trees.

XyDiff[31] O(n log n) insert, remove,
rename, move

Ordered Java and C++ version
available. C++ version
unmaintained.

Table 3.1: Tree edit script generating methods with implementation and describing
academic work.
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4 Matching Method

This chapter will have an in-depth description of the proposed matching method
used to construct the approximate cost-minimal tree-to-tree matching. This method
can be roughly separated into three steps:

1. A simple straightforward matching step which tries to find obvious common
structures in both versions of the tree. The nodes mapped in this step do not
have to be considered in subsequent matching steps and thus significantly
improve their speed.

2. Construction of feature vectors for unmapped sub-trees of both trees, i.e., vec-
tors which are similar if sub-trees are similar and have fixed length, small
representation contrary to the complete sub-tree structure, which is variable
length. Then, construction of appropriate index structures for those feature
vectors in order to have fast look-ups of nearest neighbours.

3. Mapping of previously unmapped sub-trees with the help of feature vectors.

4.1 Method Overview

Figure 4.1 gives an overview over the proposed method. First the trees are read
from files. XML, HTML, and JSON is supported. This is described in Section 5.1.
Then a hash-matching step is performed, excluding small sub-trees. How the hash-
matching is done was already described in Section 2.4.3. Afterwards, a top-down
matching is done as described in Section 2.4.1. Subsequently, feature vectors of
sub-trees in both trees are constructed. How this is done is described in Section
4.4. The size of the feature vectors is reduced as described in Section 4.4.3. Next,
they are put into an efficient index structure supporting nearest neighbour queries.
Index structure candidates are described in Section 4.5. The feature vectors and the
index structure are then used to map previously unmapped sub-trees – see Section
4.6. Thereafter, another hash-matching is performed as of Section 2.4.3, this time
including small sub-trees. Being done with the matching phase, the tree edit script is
constructed from the generated matching. How this is done is described in Section
5.2. Finally, we show how this tree edit script can be saved as an XML or JSON file
in Section 5.3
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Read trees from XML,
HTML or JSON files

(Section 5.1)

Hash-matching
to find obious

mappings excluding
small sub-trees
(Section 2.4.3)

Run top-down
matching

(Section 2.4.1)

Construct feature
vectors for both trees

(Section 4.4)

Reduce dimension
of feature vectors

(Section 4.4.3)

Construction of index
structures for feature

vectors for nearest
neighbour search

(Section 4.5)

Match with fea-
ture vectors and
index structures

(Section 4.6)

Hash-matching
for the remaining,

small sub-trees
(Section 2.4.3)

Construct tree edit
script from matching

(Section 5.2)

Output tree
edit script as

XML or JSON
(Section 5.3)

Figure 4.1: Overview of the steps of the change detection and correction method
from input to output with references to where those steps are described
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4.2 Finding Simple Matchings

In this step of the algorithm, we try to map large parts of the trees as possible. The
goal is not to find all possible mappings – only to find the obvious ones. We will
use methods and concepts already described in literature and successfully applied.
Those are top-down matching [42, 49] and matching using sub-tree hashes [31], as
in Section 2.4.1-2.4.3.

This part of the proposed method uses a combined top-down and hash match-
ing to rapidly find obvious mappings. First, a bottom-up hash matching is done,
followed by a top-down matching. There are some difficulties, however, if those
methods are used as a pre-processing step to other more sophisticated matching
algorithms. The hash matching can, for example, produce mappings like the one
in Figure 4.2, where it maps a smaller sub-tree to the wrong sub-tree. Once trees
are mapped like this, succeeding matching algorithms can cause a lot of edit opera-
tions. This is an artifact of the basic approach used in the bottom-up hash matching
algorithm.

We decided to implement measures to prevent some of these incorrect hash map-
pings. Those are:

1. Sub-trees have to be sufficiently large in order to be mapped in the hash
matching step. We only map sub-trees which contain more than 3 nodes, at
first. This could have prevented the wrong mapping in Figure 4.2, where for
example the node with label “E” is incorrectly mapped. Only mapping sub-
trees with more than three nodes would have caused the bottom-up matching
to find no mappings in this example. This is better than producing incorrect
mappings, as a top-down matching would produce better results.

2. Nodes are preferably mapped to nodes having ancestors with equal labels in
both trees. This avoids the problem exhibited in Figure 4.2 as well, because
for example the node with label “E” on the left hand side would be correctly
mapped to the node with equal label and parent “C” on the right hand side.

A

C D

E HG G E H

A

C D

E IG I E H

Figure 4.2: Bad bottom-up matching result: Mapping node with label “C” on the
left to the one on the right now, causes a lot of moves.
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3. Nodes are preferably mapped to nodes with same path.

4. If a sibling of a node a is already mapped to node b, a will be preferably
mapped to nodes having the same parent as b. This avoids the problem in Fig-
ure 4.3, where the node with label “E” is incorrectly mapped. After correctly
mapping node with label “G”, “E” would be mapped to the correct node, be-
cause “G” is a sibling of “E”.

These measures do not prevent the algorithm from creating any wrong or dis-
abling mappings1. Their usefulness can be increased by mapping parents of mapped
sub-trees to each other in the bottom-up hash matching step like in XyDiff [31]. If
two sub-trees are mapped to each other, one looks at their parents and maps them if
they have the same label. This is done recursively upwards towards the root, with
the size of the mapped sub-tree determining how often we recurse upwards. The
dependence on the sub-tree size prevents a small mapped sub-tree from disabling a
lot of other correct mappings. Once ancestors are mapped, measure 4. works more
effectively.

4.3 Feature Vectors

Feature vectors are a widely applied concept used to embed high dimensional data
into lower dimensional spaces. One area where they have been used extensively is
computer vision. Let’s take the task of searching for similar images as an example.
This is useful for object recognition. We have an image database and an input im-
age for which we want to find similar images. Let the images have, for example,
a size of 1024 × 768 pixels with three colors each – a dimensionality of more than
2 million. Using standard classification or clustering methods on data with such a

1 All incorrect mappings can only be avoided if we use a non-heuristic matching method, which
would lead to a high runtime complexity.

A

C D

E HG G E H

A

C D

E IG I E H

Figure 4.3: Bad bottom-up matching result: Children of one node are mapped to
nodes with different parents even though they could be mapped to
nodes with same parent.

40



4.4 Construction of Feature Vectors

high dimensionality is not possible. The size of the data has to be reduced drasti-
cally. This is done by looking closely at what is significant in the images and what
we mean if we say “similar” images. Usually, corners in images are significant –
though this may vary with the motive – and similar means the content of the im-
age is roughly the same, disregarding illumination changes, noise, small changes
in viewpoint, scale, rotation, and small distortions. The whole similarity search for
images may then work as follows:

1. Find significant portions (features) in the image, e.g., corners. Examples for
corner points are shown in Figure 4.4.

2. Build vectors describing the features in a way that is invariant to illumina-
tion changes, noise, small changes in viewpoint, scale and rotation, with the
property that the vectors are similar under some metric distance function, if
the features are similar. How such a feature vector may look like for image
features is shown in Figure 4.4 on the right hand side.

3. Put the feature vectors into structures which allow fast nearest neighbour
queries, i.e., fast searches for similar features.

4. Output the image as similar which has most features in common with the
input image.

One of the most popular algorithms which constructs such image features is SIFT
(Scale-invariant feature transform) [29]. Everyone who has stiched a panorama be-
fore has probably used it or a variant thereof. SIFT transforms the features into a
128 dimensional vector, which has most of the desired properties. In the paper they
then use a k-d tree (Introduced later in Section 4.5.1) for nearest neighbour queries
in the feature vector space.

4.4 Construction of Feature Vectors

The combined bottom-up hash matching and top-down matching, often signifi-
cantly reduces the number of unmapped nodes. There are, however, some cases
where sub-trees cannot be mapped or the matching algorithm cannot find any map-
pings at all. Examples where the previous matching algorithm fails are easily con-
structed:

• Add a sibling to every leaf node, change the label of every leaf node or change
the label of one child of every node. This prevents the bottom-up hash match-
ing from mapping any nodes – all the sub-tree hashes change.

• Change the label of the root node. This prevents the top-down matching from
mapping any nodes.
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Original Image
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128 dimensional SIFT feature 
vector (example for one 

feature)

Figure 4.4: Generating feature vectors for similarity search for images with SIFT

In practice these kinds of changes are structural changes. For example, in file sys-
tems a versioning system may add a .svn folder to every folder or in XML attributes
are renamed, deleted or added automatically. Even so such changes do happen, and
should be handled.
Feature vectors are used to map those remaining, unmapped nodes. Feature vec-
tors are fixed length vectors with the property that similar sub-trees produce similar
vectors with regard to a distance metric. To be specific, two similar sub-trees may
have two feature vectors with the distance in, e.g., euclidean space small. By map-
ping the sub-trees into a regular space, data structures for efficiently organizing and
querying multidimensional data can be used to find nearest neighbours to a feature
vector representing a sub-tree. The probability of those nearest neighbours being
similar is then high.
The constructed feature vector should be invariant to changes in the order of sib-
lings if the matching is done on unordered trees, and it should change with changes
in the sibling order if it is done on ordered trees. For example, the order indepen-
dent sub-tree hash already mentioned in section 2.4.3 would qualify for a one di-
mensional feature vector which is similar if sibling order is changed. It is, however,
unsuited otherwise as even one edit operation such as insert, remove or rename
would change the sub-tree hash drastically. This is caused by the hash function
essentially being a random function and the upward propagation of those random
values – a change in a leaf node randomly changes the value of all the sub-trees
which contain this leaf node.
Once we have a good algorithm which produces feature vectors we can calculate the
similarity by comparing feature vectors. This similarity measure is, however, only
an approximation. Due to their low dimensionality the information feature vectors
contain is – by design – often drastically reduced from that of the data structures
representing the original sub-trees: Different sub-trees may be mapped to one fea-
ture vector. A similarity in the feature vectors does thus not automatically mean a
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similarity in the sub-trees (false positives). Therefore, the nearest neighbours in the
feature vector space are merely used as candidates, and the similarity there is only
used as a hint which still has to be confirmed.

4.4.1 Grams for Trees

As with string similarity, a successfully applied concept is to represent the large
trees by short excerpts. These excerpts – also called shingles or grams, capture the
tree in a sufficiently representative way. Describing the sub-tree by a set or bag
of grams enables us to use efficient similarity algorithms which work with such
sets. This basically turns the abstract problem of finding similar sub-trees into the
more well defined and tractable task of finding sets with large intersections. How
we construct the grams depends on what we want them to capture. If we are not
interested in the tree structure and only in the leaf nodes, we may as well construct
the grams only from leaf nodes. Similarly, if we do not want to map sub-trees with
reordered siblings, we should construct grams which capture the order of nodes.
There are several ways to theoretically construct the tree-grams:

• All nodes. Having nodes in common is a necessary condition for similarity. If
structural changes are rare, simply adding the label of every node in the sub-
tree to the bag of grams might be enough. This representation is invariant to
structural changes and thus specifically invariant to the changes in the order.

• Leaf nodes. Having leaf nodes in common might be enough of a similarity
indication for sub-trees. If this is the case one simple algorithm to construct a
bag of grams representing the sub-trees is by iterating over the sub-tree and
adding all the leaf nodes to the bag of grams. This representation is invariant
to structural changes as well.

• Nodes with ancestors. We add each node together with q of its ancestors as
sequence to the bag. Captures moves of nodes to other ancestors. Does not
capture order changes or if a node is moved to another node with same ances-
tor labels.

• Nodes with siblings. We add each node together with p siblings left and right
of it as sequence. Captures order changes and moves to other nodes.

• Nodes with ancestors and siblings. We add each node together with p siblings
and q ancestors. Captures order changes and moves. If we sort the siblings
of both trees prior to extracting the grams, this representation is invariant to
order changes. By changing p and q, the amount of sibling and ancestor infor-
mation captured by a gram can be adjusted.

• Other content. If we have text nodes with a lot of content, we might want to
treat that content not as a single piece of information, like smaller nodes. Then
we might want to add normal string n-grams (See Section 2.5) of that text to
the structure describing the whole sub-tree.
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4.4.2 Nodes with Ancestors and Siblings: p,q-Grams

Because they capture both ancestor and sibling relationships, are configurable, can
be made invariant to small order changes, and have been already successfully used
in [3, 2] the concept of p,q-grams – grams with p siblings and q ancestors – is used to
construct the feature vectors representing sub-trees in our approach. Those grams
can be generated in O(n log n) time and thus within the self-imposed runtime lim-
its. How such p,q-grams are constructed can be seen in Figure 4.5, where the steps
of the construction are shown using an example tree. Invariance to order changes
is obtained through sorting siblings. Augsten et al. show in [2] that if this is done
the permutation of a constant amount of siblings changes only a constant amount
of p,q-grams. After sorting the trees the p,q-grams are build by sliding a window
of fixed size over the children of every node, and then selecting all possible permu-
tations of p children as “base” and q ancestors as “stem”. Permuting the children
within the window makes the p,q-grams robust to modifications of those children,
called “children error” in [2], while still capturing sibling relationships. The “stem”
captures ancestor relationships in the p,q-grams. In Figure 4.5, the sorting changes
the order of the children of the node with label “A”. The results of the sibling per-
mutation within a window of size 3 are shown as well for the children of the node
with label “A”. If this property is not desired, those two steps can be skipped.
After sorting the siblings, smaller trees with a “stem” representing the p ancestors
of and a “base” representing the q siblings is constructed. If the node does not have
p ancestors or q siblings, dummy nodes are used. In Figure 4.5 p = q = 2 and the
dummy nodes have asterisk labels. The siblings are taken from within a sliding
window of a specific size and permuted, such that all possible combinations of sib-
lings within that window are constructed. The p,q-grams are then serializations2 of
the constructed trees. The bottom of Figure 4.5 shows the serializations of all the
p,q-grams of the example tree.

4.4.3 Dimensional Reduction

Even though the comparison of trees may now be easier, the actual size of the tree
representations has now actually gone up. We will now try to represent each sub-
tree with as few dimensions as possible.
In literature this is often called a signature vector, or if we extract something signif-
icant and use it as representative, a feature vector.

Hashing the Grams

Saving the grams as strings is inefficient as the information entropy is quite low3.
We can mitigate this quite easily by hashing the string representations of the grams.

2 Serializing the tree in this case is easy, because we know the tree structure by way of parameters
p and q: We can simply put the labels of p ancestors and q siblings into an array of size p+ q.

3To be exact, the information entropy of english is as low as 0.6 to 1.3 bits per letter [43]. As the
grams often contain english parts, the information entropy of the grams is low.
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Figure 4.5: Construction of a bag of p,q-grams representing a tree

With appropriate length, e.g. 32bit, processing henceforth becomes faster as well.
Note that the length of the hash output depends on the number of possible different
p,q-grams and on the collision properties of the hashing function. A range of [0, 232)
should satisfy the first requirement, that there are enough possible different p,q-
grams, in most cases, however.

Reduction via MinHash

To reduce the dimension of the signatures of the trees one can use the concept of
MinHash: Let SA be a set of numbers representing tree A and SB be a set represent-
ing tree B. min{SA} = min{SB} is then an indication for A being similar to B. By
changing how SA and SB are constructed this minimum changes. If it is still the
same, even though the construction method changed, it is another indication that
SA and SB are similar.

Let Pr(X) denoting the probability with which a random event X occurs. Let S
be a set of hashes with a length of b bits and F a family of permutations from which
permutation π ∈ F, π : [0, 2b)→ [0, 2b) is chosen at random and it holds

∀s ∈ S : Pr[min{π(S)} = π(s)] ≈ 1

|S|
(4.1)

min{π(SA)} = min{π(SB)} would be another indication of similarity. This can be
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quantified: We define similarity as the Jaccard index:

J(A,B) =
|SA ∩ SB|
|SA ∪ SB|

(4.2)

A Jaccard index of 1 would mean identical sets and 0 dissimilar sets. It is the ratio of
common elements in the set to the number of total elements. If there are x common
elements and y dissimilar elements between A and B, J(A,B) = x

x+y
. Then with

equation 4.1:

Pr[min{π(SA)} = min{π(SB)}] =
x

x+ y
= J(A,B) (4.3)

I.e., the probability of choosing one of the common elements with π out of the |SA ∪
SB| = x+ y different elements is x

x+y
, because we have x common elements.

In practice hash functions are used instead of permutations. If the probability
of collisions is low, they behave like permutations. Of course, the variance of one
single hash function is too high to use it as any kind of estimator for the Jaccard
index. One can get there by combining several different minima from different hash
functions. What we have then is a several times smaller set from a larger one, i.e., a
dimensional reduction. This construction can also be seen in Figure 4.6, where such
a feature vector is created by combining the minimal values of hashes of several
p,q-grams.

The Appropriate Similarity Measure

We already saw the Jaccard index (4.2) as a similarity measure. The question is
now, whether this is the appropriate measure. Dividing by |SA∪SB| normalizes the
Jaccard index using the size of the participating sets to [0, 1]. This causes counter-
intuitive mappings in some cases. For example, if we map the sub-trees of node A
and B in Figure 4.7, using the Jaccard index between those sub-trees: Let all sub-
trees Si have the same size and all the elements between all sub-trees be dissimilar.
Then the similarity index between B and B1 is J(B,B1) = |S3|+|S4|

|S2|+|S3|+|S4| = 0.66 and

J(B,B2) = |S3|
|S3|+|S4| = 0.5. If we count the edit operations needed we would add S2

from B to B1 and remove S4 from B to B2, which would result in the same num-
ber of edit operations. The Jaccard index J(B,B1) and J(B,B2) is not the same,
however.

The normalization of the Jaccard index also emphasizes differences between small
sub-trees and relativises differences between large sub-trees. If we remove one item
from a sub-tree containing two items, the Jaccard similarity index would be 0.5. If
we remove half of the items in a sub-tree containing 200 items, it would be the same.
While this would not influence the nearest neighbours of sub-trees, it would make
it difficult to develop estimation methods because there one often chooses the es-
timation parameters such that the estimation method has the best precision for a
certain range of similarity. Most of the time one wants the similarity index estima-
tion method to be precise for a high similarity and less precise for low similarity.
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Figure 4.6: Contruction of feature vectors using the minimum of several hash func-
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Figure 4.7: Case where using the Jaccard index to map sub-trees leads to counterin-
tuitive results.
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An example for such behaviour can be given with the MinHash method. After the
dimensional reduction to d hash values via MinHash, one separates those d hash
values into b bands. The bands are then hashed and put into different hash tables,
such that we can look up which sub-trees belong to a certain band. If we now want
to perform a nearest neighbour search, we can calculate the bands for the sub-tree in
question and look them up in the hash tables. The sub-trees found in the hash table
are then likely nearest neighbours. Their Jaccard index can be estimated by looking
how many times the same sub-tree is found in the same bucket in the different hash
tables.

This can be seen in Figure 4.8. There we have four vector representations of sub-
trees A1-A4, from which we take a “MinHash” four times. To avoid having to write
down the permutations π, the MinHash is simulated here by taking the four small-
est elements from the vectors representing the trees in order. Those MinHashes are
then separated into two bands which are put into hash tables. To find out the Jac-
card similarity to tree B, we do the MinHash and construction of bands there, as
well. The bands are then looked up in the hash tables, which give back a list of
sub-trees which have the same bands. The Jaccard index can then be estimated by
looking how often one sub-tree is found in all the lists divided by number of bands.

Since we do not want many potential nearest neighbour candidates, we choose
the size of the bands in a way to minimize the number of sub-trees returned, i.e. in
the hash buckets, to a reasonable amount. Bigger bands give back fewer candidates
with high Jaccard index. A sub-tree A with Jacard index J(A,B) = 0.5 might then
not be found as nearest neighbour of B because the bands differ so much that both
of the trees are never in the same bucket.

Instead of the Jaccard index, we could look at the symmetric difference for set
similarity:

D(A,B) = |SA ∪ SB| − |SA ∩ SB| (4.4)

This directly reflects the number of elements we have to remove from A and add
to B if we want to transform A to B and as such should approximately reflect the
required edit operations. It is a distance measure, i.e., the distance D(A,B) between
identical sets is zero while the distance between entirely different sets is |A|+ |B|.

From Sets to Bags

Contrary to sets an element is allowed several times in a bag (or multi-set). For
example, the bag b = {a, c, a, c}, reduced to a set, would be S = {a, c}. By using bags
instead of sets, we use information about the frequency of elements which may be
important in some trees. Thinking, for example, of HTML pages some kinds of p,q-
grams could occur frequently. As a distance metric the symmetric difference can be
used:

Db(A,B) = |A|+ |B| − |A ∩B| (4.5)

With A and B being multi-sets the intersection ∩ is a multi-set intersection – every
element in the intersection appears as often as the minimal number of times it occurs
in A and B. For example {a, a, d, a} ∩ {a, c, a} = {a, a}.
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Figure 4.8: Using MinHash and bands in hash tables to efficiently estimate the Jac-
card index. MinHash is simulated here by taking the four smalles ele-
ments in order.

Hash Histograms

A straightforward method to efficiently estimate the symmetric difference is by first
pseudo-randomly reducing the dimensionality of the elements, then building his-
tograms, counting the frequency of the reduced elements, and finally defining a
similarity metric on the histograms, giving an estimation of Db. As it turns out
the histograms can be constructed in a way such that the similarity metric is the
squared euclidean distance. Because this is a proper metric, we can use efficient
index structures for nearest neighbour search to find similar trees in the space im-
posed by this metric. If we have n frequencies and A is a multi-set of elements and
h a hash function, the frequencies UA, being stored as a vector of dimension n, are
defined as

∀i ∈ [n] : UA[i] = |{x|x ∈ A, h(x) mod n = i}| (4.6)

That means for every element x ∈ A we increase the appropriate frequency in UA:
UA[h(x) mod n]+ = 1.
Let the number of equal elements of two bags A an B be x, the number of different
or unmapped elements in A be yA, the ones from B be yB and the bag distance
(symmetrical difference) be

Db(A,B) = yA + yB (4.7)

Let x+ yS = |S|. For any bag S, any x and any yS the expected value of US is:

E[US[i]] =
x

n
+
yS
n

(4.8)

thus
E[UA(i)− UB(i)] =

x

n
+
yA
n
− x

n
− yB

n
=
yA
n
− yB

n
(4.9)
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Therefore in sum:

E

[
n−1∑
i=0

UA[i]− UB[i]

]
= yA − yB (4.10)

If we now add δS =
∣∣yA−yB

n

∣∣ to each of the frequencies of the smaller bag this ex-
pected value and thus the mean of UA[i]− UB[i] becomes zero.

Let y = 2 min(yA, yB) and yd = |yA − yB|. The probability that two of the elements
accounting to y, one from A and one from B, increases the same frequency is 1

n
.

ys = y
n

of unequal elements thus increase the same frequency on average. If we look
at the difference ∆AB = UA(i) − UB(i), we notice that this is a binomial distributed
random variable, because we have y−ys+yd

n
independent pseudo-random events for

each difference, each either increasing or decreasing the difference with equal prob-
ability p = 0.5. Thus

UA[i]− UB[i] ∼ B(
y − ys + yd

n
, 0.5)− y − ys + yd

2n
(4.11)

For a larger number of events the binomial distribution is approximately a normal
distribution and the sample variance of those n random events X , which either
increase or decrease ∆AB, can then be estimated with the well known formula and
µ the expected value of X :

σ2 =
1

n

n−1∑
i=0

(Xi − µ)2 (4.12)

With the expected value of the difference zero E[UA[i] − UB[i]] = 0, because we
added δS to the smaller multi-set and σ2 = np(1 − p) for the binomial distribution,
the variance of this distribution is then:

y − ys + yd
4n

= σ2 =
1

n

n−1∑
i=0

(UA(i)− UB(i))2 (4.13)

With ys = y
n

it follows:

y(1− 1

n
) + yd = 4

n−1∑
i=0

(UA(i)− UB(i))2 (4.14)

=
n−1∑
i=0

(2 · UA(i)− 2 · UB(i))2 (4.15)

The symmetrical difference between the bags is

Db(A,B) = y + yd (4.16)

If we now multiply each of the frequencies with 2 beforehand for n� 0 with Equa-

tion 4.14 and the euclidean norm defined as ||x|| =
√∑n−1

i=0 x
2
i :

Db(A,B) =
n−1∑
i=0

(UA(i)− UB(i))2 = ||UA − UB||22 (4.17)

50



4.4 Construction of Feature Vectors

This is obviously a metric, because it is the square of the euclidean distance between
the frequency vectors. It is not a proper metric for the underlying bags, because it
is only an approximation. For example

A 6= B =⇒ Db(A,B) > 0 (4.18)

might not hold, i.e., two bags in the accompanying space can be different and si-
multaneously have distance zero. For large n, when the approximation becomes
exact, it does however become a proper metric as we can show the triangle inequal-
ity for the exact symmetric difference Db. If we separate y into the two components
cA and cB respectively belonging to the bags and use yd = |yA− yB| and that for any
numbers a and b |a+ b| ≤ |a|+ |b|:

Db(A,C) = |yA − yC |+ y (4.19)
= |yA − yC |+ (cA + cC) (4.20)
≤ |yA − yB + yB − yC |+ (cA + cB + cB + cC) (4.21)
≤ |yA − yB|+ |yB − yC |+ (cA + cB) + (cB + cC) (4.22)
= |yA − yB|+ (cA + cB) + |yB − yC |+ (cB + cC) (4.23)
= Db(A,B) +Db(B,C) (4.24)

Therefore using this histogram hashing scheme, we can efficiently estimate the sym-
metric difference, which is a metric. It is thus suited for nearest neighbour search.

Spherical Distance

A similar technique is to project each element in each bag onto a n-dimensional
unit sphere and then adding up all the resulting vectors. This can be thought of
as adding the element randomly distributed simultaneously to each of the n fre-
quencies, instead of adding each element from the bag to one random frequency,
like in the previous approach. Random sphere points can be easily constructed by
assigning each vector element a uniformly distributed number in [−1, 1] and then
normalizing the vector such that its distance from the origin is 1. The same vector
has to be given to two elements that are equal.
If we have two bags A and B with x elements in common and yA and yB different
elements; vx denoting the vectors of those common elements, vA and vB those of the
different objects and a and b representing the sum of all vectors of all elements in
one bag, we have:

a− b =
x∑
i=0

(vx[i]) +

yA∑
i=0

(vA[i])−
x∑
i=0

(vx[i])−
yB∑
i=0

(vB[i]) (4.25)

=

yA∑
i=0

(vA[i])−
yB∑
i=0

(vB[i]) (4.26)

=

min(yA,yB)∑
i=0

(vA[i]− vB[i]) +

yA∑
i=min(yA,yB)

(vA[i])−
yB∑

i=min(yA,yB)

(vB[i]) (4.27)
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The expected value of one unnormalized vector element is E[v[i]k] = 0, the variance
is Var[v[i]k] = 1

3
. The expected value of a normalized vector element isE[v(i)(k)] = 0

and the variance Var[v(i)(k)] = 1
3n

. Thus the variance of the difference Var[vA[i]k −
vB[i]k] = 2

3n
. With y = 2 min(yA, yB) and yd = |yA − yB|, we have y

2
differences and

yd single elements. By again using the well known formula to calculate the variance
from samples, we have:

Var[a− b] =
y

3n
+
yd
3n

=
1

n

n−1∑
i=0

(a[i]− b[i])2 (4.28)

=⇒ y + yd = 3
n−1∑
i=0

(a[i]− b[i])2 (4.29)

=
n−1∑
i=0

(
√

3 · a[i]−
√

3 · b[i])2 (4.30)

If we incorporate those factors this results in the same distance measure as before:

Db(A,B) =
n∑
i=0

(a[i]− b[i])2 = ||a− b||22 (4.31)

Note that whereas the result for large differences is the same, this method is better
than the previous histogram hashing method for small differences or small n. As an
example, let to bags A and B differ in just one element. The chance that it increases
the same frequency is 1

n
. If this happens the two bags will have distance zero, even

if they are different. The chance that it happens here is smaller because we use n
random numbers per element. The chance that they are the same is negligible. This
advantage is lost with larger differences as single elements become less relevant and
the number of dimensions n of the vectors is the restricting factor. The disadvantage
of this method is that we have to generate n random numbers per element, e.g. by
n different hash functions, whereas the previous method only required one, which
could be a straightforward modulo operation of the hash of the element. For the
data we tested with, n ≈ 20 turned out to be a reasonable compromise between
performance and quality. We use a pseudo-random generator seeded by the initial
hash value to generate the n different random numbers per element. With a simple
pseudo-random generator, this is reasonably fast even for larger n.

Error Analysis

Being a sum of squares Db is chi squared(χ2) distributed with n degrees of freedom,
if each component is distributed asN (0, 1). In the first histogram hashing approach
UA[i] − UB[i] is Bernoulli distributed and thus approaches the normal distribution
for a larger amount of grams. In the spherical distance approach a − b is a sum
of uniformly distributed random variables and for larger sums, i.e., lots of grams,
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approaches a normal distribution as well. If

Db =
n−1∑
i=0

X2
i (4.32)

in the histogram hashing approach the variance σ2
B of Xi is

σ2
B =

y − y
n

+ yd

n
(4.33)

and for the spherical distance it is

σ2
S =

y + yd
n

(4.34)

If we normalize the variances of the random variables to one we have:

1

σ2
Db =

1

σ2

n−1∑
i=0

X2
i ∼ χ2(n) (4.35)

The mean and the variance of the chi squared distribution is:

µχ2 = n σχ2 = 2n (4.36)

It’s probability density function is:

f(x, n) =
x(n/2)−1e−x/2

2k/2Γ(k/2)
(4.37)

With the Gamma function:

Γ(k) =

{
(k − 1)! for dke = k
√
π (2k−2)!!

2(2k−1)/2 for d2ke = 2k
(4.38)

The cumulative distribution function is:

F (x, n) =
γ(n/2, x/2)

Γ(n/2)
γ(n, x) = xne−x

∞∑
k=0

Γ(a)

Γ(a+ n+ 1)
xn (4.39)

With (4.35) and (4.36):

E[Db] = σ2n Var[Db] = 2σ4n (4.40)

For the histogram hashing method the variance is therefore:

Var[Db] = 2
y − y

n
+ yd

n
(4.41)
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and for the spherical distance method:

Var[Db] = 2
y + yd
n

(4.42)

As expected the variance of the distance measure decreases with larger n and in-
creases with a larger number of differences. With the help of the probability density
function we can see in which specific bounds the distance will probably be in. Let’s
say Db(A,B) = 100, n = 20 and we want to see the in which bounds the distance
will be in with probability .8. We are looking for x with y = x/σ2:

F (y, n) = 0.1 (4.43)

=⇒ x = 2 · 6.22 · 100

20
= 62.2 (4.44)

F (y, n) = 0.9 (4.45)

=⇒ x = 2 · 14.21 · 100

20
= 142.1 (4.46)

To get F−1 SciPy [21] (The gammaincinv function) has been used . So the probability
that the distance is 62.2 ≤ Db(A,B) ≤ 142.1 is 80% with E[Db(A,B)] = 100 and
n = 20. This expresses with numbers what we already knew: That we reduce the
precision of the distance measure significantly by reducing the dimensionality of
the feature vectors. We discard information in the feature vectors at random, which
is obviously destructive. In the next section we present a weighting scheme which
discards less relevant information.

Weighting Grams

Lets say we have two trees represented by bags A and B. SA and SB are bags
representing sub-trees in A and B. If we now have a gram e ∈ A for which e 6∈ B
and we simply remove it from A our distance measure between those sub-trees will
be (again with x = |A| ∩ |B|, i.e., the common elements of the multi-sets):

Db(A,B) = |A|+ |B| − x (4.47)
Db(A\{e}, B) = |A| − 1 + |B| − x = Db(A,B)− 1 (4.48)

if e is only once in A. Removing e decreases the distance of all sub-trees containing
e in A to any sub-tree in B. The nearest neighbours of sub-trees of A in B are thus
unaffected. The reverse is not true. There could be two identical sub-trees in A,
except that one contains e. The distance of a sub-tree in B is then equal to both trees
after e is removed. Before removing e the sub-tree containing that element was fur-
ther away. Thus, this can potentially change the nearest neighbours in a detrimental
way because removing that e requires an edit operation, which the other sub-tree,
not containing e, does not require.
Therefore, we have to save how many elements we removed and add that to our
distance measure such that it remains the same (in this case one). If we record via
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an additional dimension in the vector describing each sub-tree how many elements
we removed and if vA and vB the vectors representing the sub-trees with vA(n) the
number of elements removed in A and vB(n) the number of elements removed in B
our distance measure would be

D′b(A,B) =
n−1∑
i=0

(vA(i)− vB(i))2 + |vA(n)− vB(n)| (4.49)

We have seen with equations 4.43-4.46 that the variance of the distance can be
unusually high and that therefore the distance measure can be nearly useless for
small n and large expected distances. There is no easy way to solve or diminish this
problem without making assumptions about the underlying data.

One more general assumption we can make is that having less frequent grams in
common is more significant than having frequent grams in common. If we look, for
example, at HTML documents, two sub-trees having a br element in common are
not that rare, while having a long text node in common which appears infrequently
in the document is a strong indication of a correct mapping.

One frequently used method is to weight the elements according to their fre-
quency combined with their rarity(tf · idf – term frequency times inverse document
frequency) [41]. The thought being that we want to improve both recall and preci-
sion and weight the elements accordingly. The tf term should improve recall, i.e.,
emphasizes elements which occur frequently. This would, for example, give the el-
ement that occurs in A and not in B zero weight because it does not occur in tree B.
The inverse document frequency improves precision, i.e., decreases the number of
mapping candidates. It should punish elements which occur often throughout the
tree such as the previous br element. If we view every sub-tree as a different “doc-
ument”, we should look at the number of times an element occurs with a different
parent in the two trees.

The term frequency is then best defined as the minimum term frequency in each
of the trees normalized to one, i.e., divided by the maximum occurring frequency.
If the element e occurs c(e, A) times in A and c(e, B) times in B, we can define the
term (or element) frequency as

tf(e) =
min(c(e, A), c(e, B))

max(maxk∈A{c(k,A)},maxk∈B{c(k,B)})
(4.50)

Let dp(e, B) be the number of different parents an element e has in tree B and
innerNodes(B) the number of inner, non-leaf nodes in B, then the inverse docu-
ment frequency is

idf(e) =

{
− log innerNodes(B)

dp(e,B)
if dp(e, B) > 0

0 else
(4.51)

The weight w of each element is then w(e) = min(1, tf(e) · idf(e)). Each element is
weighted before adding it to either a frequency in the hash histogram method, or
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point in a hyperdimensional sphere in the spherical distance method. Simultane-
ously we save the weight change in vA(n), i.e., for each element

vA(n) := vA(n) + 1− w(e) (4.52)

As distance function Equation 4.49 can still be used.

4.5 Efficient Index Structures

The sub-trees are now represented by a n-dimensional vector and are arranged in a
n-dimensional space imposed by the distance function. We can then use standard
methods to build index structures to efficiently find nearest neighbours in such a
space. We will focus on k-d trees, hierarchical k-means, and k-means locale shared
hashing (KLSH). These methods have been shown to be useful in practice [29, 35, 36]
and are simultaneously easy to implement.

4.5.1 k-d Tree

A classical index structure for multidimensional data is a k-dimensional tree struc-
ture (k-d tree). It is a balanced binary tree, where on each level a hyperplane sep-
arates the set of multidimensional points into two equally large sets. The hyper-
planes are perpendicular to a depth-alternating axis, i.e., if the axis are represented
by numbers x, y, z, . . . = 0, 1, 2, . . . the axis is selected as d mod n with d the current
depth in the k-d tree and k the dimensionality of the data points.
Let D by a set of input data points having dimensionality k for which we want to
speed up nearest neighbour queries. The k-d tree is then constructed as follows:

Algorithm 4.1. k-d tree construction

1. Set the current data points Dc to D.

2. Set the current dimension to d = 0.

3. Sort all the current data points Dc using the value in dimension d.

4. Select the median of the sorted points.

5. If the array only contains one data point, create a k-d tree leaf node – storing the data
point – and return.

6. Create a k-d tree inner node storing the coordinates of the median. Store the other data
points from the start of the sorted array to the median and from the median to the end
of the array in the left and right child of that k-d tree node.

7. Set d = (d+ 1) mod k

8. Let Dl be the first half of the sorted Dc and Dr the second half. Recursively go to 3.,
once with Dc = Dl and once with Dc = Dr.
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An example for a two dimensional k-d tree build with this algorithm can be seen
in 4.9 for k = 2. It shows that every inner node halves the data points in one dimen-
sion.

The n nearest neighbours of a point can be found using following algorithm. It uses
a priority queue pq where data points closer to the query point have lower priority,
i.e., where the points furthest away from the query point are on top.

Algorithm 4.2. k-d tree nearest neighbour query

1. Start with the root node as current node l.

2. If l’s coordinates are closer to the query point than the top of pq and pq already con-
tains n items, remove the top element from pq and add the current node’s coordinates.
If pq contains less then n items always add l’s coordinates.

3. If l is a leaf node return.

4. If the query point’s coordinate in the current dimension (d mod k, with d the depth
of l in the k-d tree) is smaller than l’s coordinate in that dimension, recursively go to
2. with the left child as current node l, else go to 2. with the right child as current
node l.

5. If the distance in the current dimension from query point to l’s coordinate in that
dimension is smaller or equal than the top of pq, recursively call 2. with the other
child as well.

Afterwards, the n nearest neighbours are in the priority queue.

As can be seen, the building of the k-d tree is dominated by the sorting operation
and therefore runs inO(n log2 n). The runtime complexity of the j nearest neighbour
queries is less obvious. If the points are well distributed, the dimensionality of the
data k is fairly low and the recursion in 5. does not happen its runtime isO(j log n).
In degenerated cases, for example, if all the data points are at one coordinate, the

Figure 4.9: Stylized two-dimensional k-d tree with data points
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query time goes up to O(j × n). Other degenerated cases can be found in a k-d
tree introduction by Moore [32]. With higher dimensionality j nearest neighbour
search always degrades to O(j × n) and is thus not faster than a straightforward
linear search. This is due to the curse of dimensionality and cannot be avoided [18].
Therefore, one of the following approximate nearest neighbour algorithms has to
be used with data of higher dimensionality. Note that the exact algorithm can be
transformed to an approximate algorithm by branching out only a limited amount
of times in step 5 (Best bin first approach – see next section).

4.5.2 Best Bin First

By minimally modifying the k-d tree n nearest neighbour query algorithm it can be
transformed into an approximate nearest neighbour search. This is then called best
bin first approach [5]. It works by introducing another priority queue during query
time which has points closer to the query point on top. Then, instead of recursing in
step five ,in the previous section, one adds the branch to this priority queue. Then,
after it has run, we rerun the nearest neighbour search with points from the prior-
ity queue, taking closer points first. This is only done a limited amount of times.
If we run it for all points in the priority queue, we would have the exact nearest
neighbours. Heuristically running it only for close nodes, gives us the approximate
nearest neighbours, but also a speed up.

4.5.3 Locale Sensitive Hashing

Locale sensitive hashing (LSH) is based on the idea of having a hash function which
hashes nearest neighbours to same buckets. We already looked at this approach
in connection with the MinHash algorithm at Section 4.4.3. Now, that we have
vectors in Rn and euclidean spaces, we would have to use a euclidean version of
LSH like E2LSH [11], where the points are projected onto random lines with the line
segments being hash values, or by embedding the euclidean points into Hamming
space and doing the LSH there [19].

It has been shown [36] that those kinds of LSH methods perform sometimes
poorly because they do not adapt to the data distribution. Essentially they divide
the space into cells with about same volume – each cell having a hash value. If the
point density is low or high the algorithm does not react, i.e., shrink or expand the
volume of the cell, returning too few or too many results. Because of this we did
not use these methods and concentrated on the two following ones.

4.5.4 Hierarchical k-Means

Hierarchical k-means has been successfully used to cluster high dimensional data
[35]. It works by recursively finding centroids for the data point clusters and then
arranging those clusters into a tree structure.
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k-Means Clustering

This method partitions the data into k Voronoi cells. Each cell is defined by the cen-
troid (i.e., average coordinate) of all data points belonging to it. Data points, in turn,
belong to the cell with minimal center distance. Given the data points (p1, p2, . . . , pn)
and looking for k clusters S = (S1, S2, . . . , Sk) which partition the points and with
respective mean µi, the problem of finding a set of means which minimizes the dis-
tance from means to cluster points can be formulated as:

Smin = arg min
S

k∑
i=1

∑
p∈Si

d(p, µi) (4.53)

with d(x, y) the distance function. Solving this problem exactly is NP -hard. There is,
however, a very popular iterative algorithm which converges fast to an approximate
solution [28]. It works as follows:

Algorithm 4.3. k-Means clustering

1. Set µ1 = p1.

2. For i = 2 . . . k: Search (p1, . . . , pn) for the point pl for which the distance to all the
previously defined means (µ1, . . . , µi−1) is maximal. Set µi = pl.

3. Iterate through (p1, . . . , pn) and attach the the point to the partition Si with nearest
mean, i.e., where d(µi, pl) is minimal.

4. Recalculate each mean (µ1, . . . , µk) with µi = 1
|Si|
∑

p∈Si
p

5. Go to 3. or terminate after a sufficient amount of iterations.

As another finishing criterion convergence (the means do not change any more),
could be used. As each iteration involves iterating over all data points twice, the
k-means are calculated in O(n) with a constant number of iterations (our default is
20).

Hierarchical k-Means

In HKM the clustering is done recursively till the number of data points in each
cluster is below a certain threshold t. The created clustering is then arranged in a
tree with the branch-out factor being the number of clusters k as children of each
node. Let D by a set of input data points, then

Algorithm 4.4. Hierarchical k-means clustering

1. Set the current data points Dc to D.

2. Cluster Dc using k-means clustering.
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3. Recursively go to 2. for the data points in clusters with size greater than t and if the
current depth of the tree is smaller than the max depth. Set Dc to the points in the
cluster.

The max depth abortion criterion is necessary to prevent endless recursion in
some degenerated cases, like when all data points have the same coordinates. A
resulting HKM clustering can be seen in Figure 4.10.

Approximate j nearest neighbour queries on HKM trees work by recursively
finding the cell the query point belongs to. Usually one selects the threshold t such
that the number of points in a cell is much larger than j so that it is enough to exam-
ine one of them in most cases. If there are less than j points in a cell, one can either
return fewer neighbours, or examine sibling cells, as well. As having cells with
fewer than t points indicates highly clustered data points, we return fewer nearest
neighbours in those cases. With a constant branch-out factor and if the data can be
clustered, this query does then run in O(log n) on average.

4.5.5 KLSH

K-means locale sensitive hashing [36] uses k-means to convert space coordinates
into hash values. Since k-means is sensitive to the distribution of data points, this
is better than directly hashing the vectors. K-means almost never converges to the
global optimum with high dimensional data. The result is a local minimum and
the initial assignment of the means determines which minimum it converges to.
Therefore, by randomly choosing the initial means µ, different k-means clusterings
can be generated. Nearest neighbours then have a higher chance of being in the
same cluster in each of the clusterings than other point pairs.
As an example, we have 1000 data points. We cluster those into 10 partitions with
k-means (k = 10) with two different random initializations. If a data point pi is in
partition S1,o and S2,p for the two different clusterings, then its LSH value is h(pi) =
k · o + p. This would give us 100 different hash buckets with 10 data points per
bucket on average. For finding the j nearest neighbours, we first look to which
partitions the query position would belong (by finding the closest cluster means
µ) and then look up the approximate nearest neighbours in the table and return
the closest ones. If there are not enough points in the table, less then j nearest
neighbours are returned. By selecting k and the number of partitions such that the
average number of points per hash bucket is a lot larger than j this can be avoided
in most cases. If it does happen, one can fall back to a linear scan or simply return
fewer nearest neighbours, which is what we do.

4.6 Matching with Feature Vectors and Index Structures

Once we have calculated the feature vectors for each sub-tree and put them into a
data structure which enables fast k-nearest neighbour searches we can find map-
pings for previously unmapped sub-trees. We iterate in pre-order over tree B and
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Figure 4.10: Stylized example 2D HKM clustering with t = 3 and k = 3. The second
level cluster boundaries are gray. The dots are data points.

execute a k-nearest neighbour4 search with the feature vector of each unmapped
node as input. We still have to decide to which, if any, of the k nearest neighbours
we want to map to, i.e., we have to figure out if a nearest neighbour is a false pos-
itive. This has to be done in O(log n) to remain within the overall runtime bounds.
We use an iterative deepening top-down matching for that. Let SB be the unmapped
sub-tree and N the set of k nearest neighbour sub-trees. For each tree SA ∈ N , we
then perform the iterative deepening top-down matching returning a cost. The it-
erative deepening top-down matching is only allowed a constant amount of node
label comparisons cmax and works as follows:

Algorithm 4.5. Iterative deepening top-down matching

1. Set the max depth dmax = 1.

2. Perform a top-down matching of SA and SB using Algorithm 2.1 with max cmax node
label comparison and max distance dmax from sub-tree root.

3. If the number of comparisons performed is lower than cmax and the max distance from
sub-tree root prevented the algorithm from visiting some nodes set dmax = dmax + 1
and go to 2. else return the result of the top-down matching.

We then map SB to the tree in N with minimum cost, approximated by the iterative
deepening top-down matching, if this minimum cost is smaller than the cost of in-
serting SB. If we haveO(log n) look-ups in the k-nearest neighbour index structure,
we can thus have O(n) unmapped nodes and still remain within O(n log n).

Figure 4.11 gives an overview over the steps involved in the feature vector match-
ing.

4k is a parameter to our method. The default is 10.
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Construct feature
vectors for both trees

(Section 4.4)

Reduce dimension
of feature vectors

(Section 4.4.3)

Construction of index
structures for feature

vectors for nearest
neighbour search

(Section 4.5)

Matching with
feature vectors and

index structures
(Section 4.6)

Figure 4.11: Overview of the steps involved in the feature vector matching
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This chapter shows the edit script calculation in its entirety, i.e., how the method
presented in the previous chapter is embedded within the whole method, how the
different input formats are read and internally represented and how the final edit
operations are generated from the matching and how those edit operations can be
saved.

Following steps are necessary for the edit script calculation:

1. Reading and parsing of the tree into an appropriate in-memory tree structure
and generation of a tree index structure for fast queries on tree and tree ma-
nipulation.

2. Calculating an approximately cost-minimal matching as described in Chapter
4.

3. Construction of a tree edit script in an appropriate output format using the
previously calculated matching.

5.1 Reading and Parsing Tree Inputs

Depending on the application different tree inputs have to be handled. Some appli-
cations may have their tree structures already in memory, however, then this step
may be skipped. This section will give a brief overview over supported input for-
mats, their purpose and how they are represented in the internal tree structure.

5.1.1 XML

XML is an important document exchange standard. It is used by a lot of applica-
tions, for example Microsoft Office, as well as for configuration files, protocols, etc.
Parsers are readily available because of its widespread use. XML can be seen as a
representation of a tree with some special properties:

• There are different types of tree nodes: Element nodes with attributes, text
nodes and comments. It does not make sense to move or rename them into
each other. For example, changing an element node to a text node does not
make sense.

• The order of elements may be important (this depends on what kind of data
is stored in the XML file) while the order of attributes is always insignificant.
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<item id=”foo”>

Example

<price currency=”€”>12.0</price>

</item>

root
r

item
e

id
a

price
e

foo
v

currency
a

€
v

12.0
t

XML

Example
t

Figure 5.1: Internal representation of an example XML file

• There is no separation between text nodes. E.g., there may not be two text
nodes following each other, as those would be interpreted as one continuous
text node.

How an XML file is internally represented as a tree can be seen in Figure 5.1. To
make this representation reversible and to distinguish for example attributes from
elements, every node has a label and a type. In this example the types are e for
elements, t for text nodes, a for attribute names and v for attribute values.

5.1.2 HTML

Having an HTML parser enables the calculation of differences between versions of
web pages. The parser must be robust and understand different HTML versions
as web pages are often not as error-free as XML files used for data exchange. Our
implementation uses htmltidy [38] to read HTML files and to fix errors browsers
would be able to fix. The internal representation is the same as the one for XML
mentioned in the previous section.

5.1.3 JSON

JSON is a straightforward hierarchical data exchange format, popularized by its
easy use in JavaScript (it is the JavaScript object notation). It consists of objects,
which are key-value pairs, and arrays, which are lists of values. A value can be
either a string, number, object, or array. An example JSON file and its internal
representation as a tree can be seen in Figure 5.2. The types are a for array elements,
k for keys and v for strings and numbers.

64



5.2 Edit Script Generation

{

“items“: [ { “id“: “1“,

      “name“: “Example“,

      “price“: { currency: “€“,

                           amount: “12.0“ }

    },

             { “id“: “2“,

      “name“: “Apple“

    }]

}

root
r

items
k

-
a

-
a

id
k

1
v

name
k

Example
v

price
k

currency
k

€
v

amount
k

12.0
v

id
k

2
v

name
k

Apple
v

JSON

Figure 5.2: Internal representation of an example JSON file

5.2 Edit Script Generation

We transform the matching generated using the method described in Chapter 4 into
an edit script. Some applications prefer the matching for further processing, how-
ever. In this case we are then already finished after we found the matching and need
not compute the edit script. Other applications require the script and thus necessi-
tate this step.
We already established that generating the tree edit script involves applying the
tree edit operations on one tree and thus requires the tree implementation to be suf-
ficiently fast when executing those operations (Section 5.2.2). Let A and B be the
two trees. Let M be the matching that maps nodes from tree B to tree A. The algo-
rithm to calculate the edit script works as follows for insert, move and rename :

Algorithm 5.1. Edit script generation

Iterate in pre-order over tree B. Let n be the current node:

1. If n has no mapping in M , insert n as child of the mapped node of n’s parent
(M(parent(n))) and emit the insert operation. Map n to the newly inserted node in
tree A. Let h be the node with label “H” in Figure 5.3. h does not have a mapping. It
has to be inserted below the node with label “A” which is the node the parent of h is
mapped to.

2. If n has a mapping in M and the parent of n’s mapped node is not the parent of the
node mapped to n (parent(M(n)) 6= M(parent(n))), move the mapped node in tree
A (M(n)) such that it is a child of the mapping of n’s parent M(parent(n)). Emit the
move operation. Let e be the node with label “E” in Figure 5.3. The sub-tree rooted
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in e is moved in Figure 5.3, because the node that the parent of e is mapped to is not
the node the parent of e is mapped to. M(e) is then moved below the node the parent
of e is mapped to.

3. If the label of n is different from the label of the matching node (l(M(n)) 6= l(n))
, change the label of the node being mapped to to that of n and emit the rename
operation. This has to be done for the node with label “C” in Figure 5.3.

As can be seen, this method requires the guarantee that the currently visited node’s
parent has a mapping. As we iterate over the tree in pre-order and the currently
visited node is guaranteed to have a mapping after the steps are executed, this is
not an issue.

For copy operation support we need to save which nodes in tree A have already
been moved. If we encounter a mapping normally a move (step 2.) with the node
being moved already, i.e., the node was already involved in a move operation in
step 2., the node is copied instead of moved. The copy operation’s parameters are
the same as those for the move operation (see 2.). After the copying, all the node’s
descendants in tree B need to be mapped to the new copy in tree A, which previ-
ously did not exist. This is done by constructing M−1 for the sub-tree to be copied.
After the copy is created in A we iterate over it and if a node has a mapping in M−1

to a node in B, we can adjust the mapping of this node in B to the correct copy
in A. This is shown Figure 5.4, where a copy of the sub-tree is created. Then the
mappings of nodes in tree B are adjusted to the new sub-tree in A.

After this iteration in pre-order over tree B, the only difference between tree A
and B is that tree A still has some nodes that have been deleted and are missing in
B. In Figure 5.3 this would be ,for example, the node with label “I”. Iterating over
tree A and emitting a remove operation for every node without mapping in M−1,
removes those nodes and makes tree A and B isomorph. We do not want to delete
those nodes earlier, because then we would not be able to support deleting whole
sub-trees, as such a sub-tree could contain a node which is moved. By removing at
the end we now have the guarantee that if a node in A has no mapping, the whole
sub-tree rooted in that node can be safely removed. Note that if sub-tree removes are
not supported, it is trivial to transform a sub-tree remove to single removes simply
by iterating in post-order over every removed sub-tree and emitting a remove for
every node.

5.2.1 Reordering Nodes

If the order of sibling nodes is important, we have to additionally reorder nodes
which are not yet correctly ordered. An example where we have to do that is shown
in Figure 5.5. The trees A and B are now identical, except where the order of sibling
nodes differs. We have a bijective mapping between the two trees, i.e., every node
in A can be mapped to one node in B. Using this mapping, we can iterate in pre-
order over tree A and reorder the siblings using the order found in tree B. Every
node in A gets the pre-order number of the node being mapped to in B as its order
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Figure 5.3: Example matching for which we want to generate a edit script.
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Figure 5.5: Matching with necessary reordering. Additionally to the matching, pre-
order numbers are shown for tree B. The numbers on the left are the
pre-order numbers of the node being mapped to on the right.

number. In Figure 5.5 those order numbers are shown next to the nodes. Then
we reorder the sibling using this number. We do this reordering by first finding
the longest increasing sub-sequence using the algorithm described in [14] which is
attributed to Knuth and runs in O(n log n). It finds the last longest increasing sub-
sequence. In the example, with input {1, 3, 2} it would thus find {1, 2} as the largest
increasing sub-sequence and not {1, 3} because it is not the last one. After this step,
we can go through the siblings again and put all the nodes which are not in the
found sequence to their right place, such that we then have siblings with strictly
increasing order number. In the example this would be done by moving the node
D to the position after E because 3 is not in the longest increasing sub-sequence.
It is clear that this leads to the minimal amount of move operations for reordering.
The largest increasing sub-sequence comprises all the nodes which do not have to
be reordered. All the nodes not in this sequence have to be moved somewhere else,
to be part of the increasing sequence. Because we can only move one node at a time,
we require exactly one move operation per out-of-sequence node to correctly order
all siblings.

5.2.2 Tree Representation

For many edit script output formats we actually have to perform all the edit op-
erations in the script on one tree to be able to properly address nodes involved in
change operations. The tree representation should therefore be able to perform all
the tree edit operations as fast as possible. This is a complex requirement – the tree
implementation has to perform, for example, insert, remove and move in O(log n)
for every kind of tree, even degenerated ones while retaining the ability for suffi-
ciently fast queries (such as parent queries).
Additionally the tree implementation needs to allow fast iteration in pre- and post-
order over the tree as well as iteration over every child of each node because use
those kinds of iterations are often used in the matching step in Chapter 4. For those
output formats which have paths in operations, such as XPath, a fast path calcula-
tion method for nodes is required. This usually involves calculating the child rank
(i.e., the index of a node below its parent) and ascending recursively to the parent
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root

A B C

D E

Figure 5.6: Pointers between nodes in the tree implementation

up to the root node of the tree.
A relatively straightforward way to implement trees is with parent and sibling

pointers: Every node has a pointer to its parent, previous and next sibling, first child
and last child (See Figure 5.6). The necessary operations then are easy to implement
as well (with n denoting the number of nodes in a tree, c the maximal number of
children of a node in a tree and h the depth of the tree):

Operation Implementation Time Complex-
ity

Iterate over c
children

Use pointer to first child. Then use the
pointers to the next siblings.

O(c)

Iterate in pre-
/post-order
over tree

Pre-/Post-order can be implemented us-
ing the child iterator via using recursion
or a stack data structure.

O(n)

Get node parent Use parent pointer O(1)
Subtree-Insert Same as inserting an item into a dou-

ble linked list (O(c)) plus updating the
sub-tree sizes of all the node’s ancestors
(O(h))

O(h) if inserting
in front or back,
else O(c+ h)

Subtree-Remove Same as removing an item from a dou-
ble linked list (O(1)) plus updating the
sub-tree sizes of all the node’s ancestors
(O(h))

O(h)

Move Combined Subtree-remove and insert O(h)
Child rank Iterate over children of parent O(c)

With this implementation, generating paths requires O(n) time. With d changes
between two trees this causes a runtime complexity of O(nd) in the edit script gen-
eration step. Path generation could be sped up by using skip lists or trees to increase
the performance of the child rank operation. We did not do this, so there is certainly
room for improvement there. It is, however, near optimal in the first few steps of
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the algorithm, where no changes to the trees are made and the complexity of child-
, pre- and post-order iteration, as well as the parent look-up, is important. This
implementation thus is a good choice if there are few changes, if we only need a
mapping between trees and not a tree edit script or if the tree is not degenerated.

5.3 Output

As the edit script is just a set of operations with parameters, we can use any lan-
guage which supports expressing this as output language. It is also beneficial for
testing and implementation purposes that the output is human readable. Since we
already have XML and JSON support and since for those data formats parsers are
readily available, we decided to output the set of operations in those formats. To
not invent another standard, names and parameters are as for DiffXML by Mouat
et al. [33]. Example output for XML can be seen in the Listing 2 and for JSON in
Listing 3. The specification of this Delta Update Language (DUL) can be found on
the homepage of DiffXML [34].

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<delta>

<insert nodetype="1" parent="/Workbook[1]/Attributes[1]"
childno="4" name="Test" />

<move node="/Workbook[1]/Attributes[1]/Attribute[3]"
parent="/Workbook[1]" childno="2" />

<update node="/Workbook[1]/Attribute[1]/value[1]/node()[1]"
charpos="1" length="4">TRUE</update>

<copy node="/Workbook[1]/Attributes[1]/Attribute[1]"
parent="/Workbook[1]" childno="3" />

<delete node="/Workbook[1]/Geometry[1]" />
</delta>

Listing 2: Example XML patch file
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[
{ "operation": "move",

"node": "Workbook.Attributes.Attribute[2]",
"parent": "Workbook.Summary", "childno": 1 },

{ "operation": "update", "node": "Workbook.Summary[0]",
"text": "Attribute" },

{ "operation": "update", "node": "Workbook.Summary[0].value",
"text": "TRUE" },

{ "operation": "copy", "node": "Workbook.Summary[0]",
"parent"="Workbook.Sheets", "childno": 1 },

{ "operation": "insert", "nodetype": "1",
"parent": "Workbook.Sheets", "childno": 0,
"key": "value", "value": "TRUE" },

{ "operation": "delete", "node": "Workbook.Summary.Item[0]" }
]

Listing 3: Example JSON patch file
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6.1 Comparison of Feature Vector Index Structures

In order to find out which of the feature vector index structure candidates presented
in Section 4.5 is most suited we tested them with test data. We generate that data by
taking random sub-trees from various freely available XML files [46], taking sub-
trees having at least 10 nodes and at most 100 nodes. For larger sub-trees the run-
time of the benchmarks would be prohibitively long. For each sub-tree we then
generated a feature vector using pq-grams and the random sphere points methods.
Additionally each tree is modified randomly, and another feature vector is calcu-
lated. We then measured performance, recall and precision with both HKM and
KLSH as well as performance for the k-d tree and a linear search with the feature
vectors of the modified trees as query points.

Table 6.1 shows the respective precision, average distance of the query point to
nearest neighbours, recall, runtime and setup time for the different methods. Pre-
cision denotes the fraction of returned nodes which is a correct nearest neighbour,
i.e., the nearest neighbours returned by the linear scan or k-d tree method (exact
solution). Therefore, a precision of 0.5 denotes that 5 of the 10 approximate nearest
neighbours were correct nearest neighbours. The other returned points can still be
close to the query point. Recall shows here how many of the points were scanned
linearly. The setup time is the time needed to build the data structure. The runtime
is the time needed for 10000 different k-nearest neighbour (k = 10) queries on 10000
different points. The points were generated as specified above. The number of di-
mensions per point was d = 20. The parameters for the KLSH scheme were j = 10
for the j-means with two j-means runs (Exactly as in the example in the previous
section 4.5.5). HKM was run with j = 10 for the j-means, as well. Clusters were
subdivided as long as they exceeded 200 data points. The maximum depth was 5.
The precision and recall are averaged over all 10000 queries. The run and setup
time is the accumulative time over all queries. Both of them are averaged over 20
runs on identical hardware (Core i5 M460). Table 6.2 shows the precision, average
distance of the query point to nearest neighbours, recall, runtime and setup time
for the different index methods for the same parameters except with 20000 differ-
ent k-nearest neighbour queries and 20000 random trees. The precision of HKM is
around 0.5 in both cases. As mentioned the HKM method has parameters. With
those parameters we could increase, e.g., the number of recalled nodes and thus
trade-off an increased precision or shorter setup time for a longer query time. How
the parameters are selected in detail, obviously depends on the runtime budget of
the application using the method presented in this thesis. The parameters selected
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are just a starting point which does work well for our test data. Similarly for the
different index structures: Those are a parameter to our method, as well. Thus, if
the runtime budget of the application using the method is high, one could use the
linear scan method to find nearest neighbours.

Figures 6.1-6.6 show results for a varying amount of data poinnts and number of
dimensions for those data points. All the non varying variables and the test data set
were the same as for Table 6.1 and Table 6.2. Every result is the average of 10 runs.
Figure 6.1 and 6.2 show that the precision of HKM is better than that of the BBF
method and does not decrease exponentially with increasing number or dimension-
ality of the data points. Figure 6.3 and 6.4 show that the setup time of all methods is
linear to the number of dimensions and the number of data points. Figure 6.5 and
6.6 show that the query time for HKM is much lower than for the other methods
and that the query time of the KLSH method is higher for a large dimensionality or
number of data points and increases faster than the other methods.

As it turns out, the choice between feature vector index structures is thus rela-
tively clear. The k-d tree performance is worse for a high number of dimensions
(e.g., 20), than the performance of the linear search. The k-d tree with best bucket
first nearest neighbour has a lower precision than HKM while having higher query
runtimes. The performance of KLSH, while in some cases better than HKM, is un-
predictable, as it sometimes puts too many points into one bucket which causes a
near linear query time. HKM, on the other hand, handles such cases well if the
maximal depth of the HKM tree is high.
As an example, we had a case where there were 10000 points with two of them be-
ing outliers. Initializing KLSH with k = 2 created one cluster for the two outliers
and one cluster for the 9998 other points. Repeating the k-means algorithm with a
different initialization did not change this. As a result, only two buckets were used
one of which contained 9998 points. Therefore, most queries resulted in a linear
scan of those 9998 points. HKM on the other hand, while doing the same clustering
on the first level, continued clustering the 9998 points on the second level, where
they could be separated into clusters of roughly equal size. This is not anecdotal

Method Precision Average dist Recall Runtime(ms) Setup time(ms)
Linear scan 1 3.43 10000 6665 0
K-d tree 1 3.43 - 15244 7.7
BBF-Tree 0.41 3.89 - 652.1 7.7
KLSH 0.77 3.58 790 360.95 131
HKM 0.52 3.77 120 140.5 270.3

Precision: Average proportion of found nearest neighbours to correct, i.e., found in the
exact result, nearest neighbours.
Average dist: Average distance of query point to found nearest neighbours.
Recall: Average number of points which were scanned lineararily during query time.

Table 6.1: k-nearest neighbour benchmark results for different index data struc-
tures for 10000 points
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Method Precision Average dist Recall Runtime(ms) Setup time(ms)
Linear scan 1 3.32 20000 26437 0
K-d tree 1 3.32 - 60768 18.6
BBF-Tree 0.38 3.79 - 1332.2 19.3
KLSH 0.80 3.45 1814.35 1500.6 261.5
HKM 0.50 3.63 124.95 321.2 612.65

Table 6.2: k-nearest neighbour benchmark results for different index data structures
for 20000 points

evidence, this is a failed test case in which KLSH failed to speed up the nearest
neighbour search, even though the data can be clustered. It exposes a fundamental
flaw in the KLSH method which does increase the runtime for the matching step to
O(n2) from O(n log n) on average.

Since the BBF method is worse than HKM, except for setup time, for which HKM
makes up by having a much better query performance, the KLSH method has this
fundamental flaw and the k-d tree and linear scan having a prohibitive runtime,
we chose the HKM index structure as default and use it as index structure while
evaluating the overall approach in the remainder of this chapter.
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Figure 6.1: Feature vector index structure precision with varying number of data
points
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Figure 6.2: Feature vector index structure precision with varying data point
dimension
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Figure 6.3: Feature vector index structure setup time with varying number of data
points
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Figure 6.4: Feature vector index structure setup time with varying data point
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Figure 6.5: Feature vector index structure query runtime with varying number of
data points
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Figure 6.6: Feature vector index structure runtime of all queries with varying data
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6.2 Feature Vector Matching Quality

In this section, we will evaluate the quality of the feature vector matching part. As
described in Section 4.4 the feature vectors are constructed by first creating smaller
p,q-gram trees, hashing those into a bag structure, then reducing the dimension of
this bag structure and finally putting the feature vectors with smaller dimensional-
ity into index structures.

6.2.1 Evaluation Method

To evaluate our method we will use both the real world data also used by Augsten
et al. [3], by courtesy of the municipality of Bolzano, annotated with a correct match-
ing, and synthetically generated test data, for which we now the correct matchings
because existing trees are modified artificially. Since our algorithm includes an ad-
ditional step which distinguishes false positives from positives, it is enough to test
during the evaluation if the correct match is included in the set of the k best matches.
Because the other index structures have flaws, or have been worse than HKM in all
cases, we only compared k-d tree/linear search, which returns the nearest neigh-
bours, and HKM, which gives back only approximate nearest neighbours. One rel-
evant parameter is the number of dimensions used. With an increasing number of
dimensions, the number of correct matchings increases as more information about
the trees can be encoded into the feature vectors. Because the maximal number
of matches is limited, increasing the number of dimensions does have diminishing
returns. If HKM is used as index structure, the disadvantage of having high dimen-
sional data cancels this diminishing return at some point, i.e., the number of found
correct matchings does not increase anymore.

6.2.2 Synthetically Generated Data

For benchmarking we used XML datasets found at [46], namely the nasa1 data set,
a document centric set of astronomical data, and the orders data set, a data centric
set of order data converted to XML from the Transaction Processing Performance
Council (TPC) benchmark. From those we extracted 1000 random sub-trees with
between 10 and 100 nodes. Those we saved in separate files. Then, we changed each
of those trees randomly, once by randomly selecting one child of every node and
changing its label (one child change), and once by randomly deleting, inserting,
moving and copying 10 nodes within the tree (const 10 change).

6.2.3 Results

For the Bolzano data set – two versions of a list of streets with hierarchically or-
ganized house and apartment numbers annotated with the correct mappings – the
maximal number of matches is 299. Performance of the exact (k-d tree/linear search)
matching and matching using HKM with k = 10 for the Bolzano data set can be
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found in Figure 6.7. It shows the number of correct matching with an increasing
dimensionality of the feature vectors. A matching is correct, as in Section 6.1, if it is
within the 10 nearest neighbours returned. The exact method returns the 10 nearest
neighbours, HKM an approximate for those 10 nearest neighbours. The parameters
for HKM are the same as before: j = 10 for j-means, subdivision for clusters greater
than 200 data points. The performance of HKM is in this case not much worse than
the performance of the linear scan, because there are only 300 data points.
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Figure 6.7: Results for the Bolzano dataset. Number of correct matches with increas-
ing dimension of the feature vectors.

Figure 6.8 and 6.9 show the graphs for the orders and nasa1 data set respec-
tively. The parameters were the same. The test correspondences were generated
using the method described in 6.2.2 – randomly changing one child of every node
(one child change). In this case the disadvantage with regards to precision, caused
by using an approximation of the k-nearest neighbours such as HKM, is more pro-
nounced. The number of correct matches plateaus at about dimensionality d = 20
if HKM is used. Further increases seem to be not always beneficial. This is accentu-
ated by the diminishing return for increasing dimensionality for the exact method,
starting as soon as dimensionality d = 10.

Figure 6.10 and 6.11 show the graphs for the orders and nasa1 data sets with
the changes made by randomly inserting, deleting, moving and copying 10 nodes
within the trees
(const change 10 copy).

As mentioned in Section 6.1 using HKM implies a performance/quality trade-
off, which is not always appropriate for all applications using the overall method.
By using an approximate nearest neighbour search, we sacrifice matching quality
for the speed of the method. Building the HKM index for n points and running n
queries has an average case runtime ofO(n log n), whereas finding the exact nearest
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Figure 6.8: Results for the orders/one child change data set. Number of correct
matches with increasing dimension of the feature vectors.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

HKM

Exact

Number of Dimensions

M
a

tc
h

e
s

Figure 6.9: Matching the nasa1/one child change data set using feature vectors.
Number of correct matches with increasing dimension of the feature
vectors.
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neighbours runs in, since we have high dimensional data points,O(n2) time. As we
deem a runtime of O(n2) as unacceptable, we consider the use of an approximate
nearest neighbour search a necessary evil. In Section 6.1 we showed that HKM
is the best method to use for this trade-off. Figure 6.10 and 6.11 show that it is
indeed a trade-off because we loose a lot of quality over the exact method. Since
the alternative would be a runtime of O(n2) in the matching step, this trade-off is
still worthwhile in most cases. One has to consider as well that we do not have
to always find the exact nearest neighbours – only the points that are reasonably
close. When HKM returns nearest neighbours with only half of them being nearest
neighbour in the exact method, it does not return arbitrary points. The approximate
nearest neighbours returned are still near the query point and might still be correct
mappings.
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Figure 6.10: Matching the orders/const change 10 copy data set using feature vec-
tors. Number of correct matches with increasing dimension of the fea-
ture vectors.
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Figure 6.11: Matching the nasa1/const change 10 copy data set using feature vec-
tors. Number of correct matches with increasing dimension of the fea-
ture vectors.
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6.3 Runtime Evaluation

Next we take a look at how the algorithm behaves with a varying number of nodes
as input. Again we tested with XML data found at [46], namely the nasa1 and
orders data sets. From these rather large files, the first n nodes were extracted and
then written in a separate file. Those smaller files were then changed randomly
with different methods, namely:

1. one child change copy/one child change nocopy : Randomly changing the
label of one child of every node. This change prevents the hash matching
phase from finding any matches and should therefore test the performance of
the approximate feature vector matching phase, which tries to find matches
for all nodes unmatched by the hash matching.

2. const change x copy/const change x nocopy : Randomly deleting, inserting,
moving and (if we allow a copy operator) copying x nodes. Those changes
should directly map to the edit operations found by the algorithm.

3. incr changes : Randomly deleting, inserting, moving and copying an increas-
ing amount of 20000 nodes.

For every of the following runtime graphs, the number of nodes has been in-
creased in 100 node increments from 100 nodes to 100000 nodes. The XML file with
this maximal number of nodes did has a size of about 2.5 Megabytes for both data
sets. The runtime is measured within the program. Only the relevant matching and
edit operation generation parts are measured. It does thus not include the over-
head introduced by reading the XML files or by writing the output. To smooth
the runtime curve we draw the moving average of 20 node increments and error
bars showing the maximum and the minimum values of some of those averages.
Because of this reason the first value of the curve is at 1000 nodes.

All runtime evaluation has been done on Linux with an Intel Celeron G530 CPU
and 6GB RAM.

Graphs with the number of nodes plotted against algorithm runtime for trees
changed with the first change model and without copy operator (one child change
nocopy) can be seen for the nasa1 dataset in Figure 6.12 and in Figure 6.14 for the

orders data set. Figure 6.13 shows results for the nasa1 dataset with a wider range
of nodes. Changing one child of every node, means for the test data that the number
of changes is proportional to the nodes. The output format needs to calculate at least
one path (XPath) per change operation (see Section 5.3). Our tree implementation
needs O(n) time for each path generation if the tree is relatively flat, which is, for
example, the case for the orders dataset. This is why our method has super-linear
runtime in Figure 6.14 and Figure 6.13. This could be avoided by using a better tree
index for the XPath generation, which we did not investigate yet.

The same graphs with copy operation available (one child change copy) can be
seen in Figure 6.15 and 6.16. The algorithm is minimally slower if a copy operation
is used because then sub-trees mapped by the hash matching or top-down matching
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step, still have to be considered in the other matching steps, as they could be copied.
This leads to more points in the HKM index structure during the feature vector
matching step and more values in the hash tables in the hash matching step and
thus increases the runtime of the algorithm.

Graphs with the second change model can be seen in Figure 6.17 with copy opera-
tion const change 10 copy and Figure 6.18 without copy operation (const change 10
nocopy) for the nasa1 dataset. The same graphs for the orders data set are Figure

6.19 and Figure 6.20. The runtime increases proportionally to the number of nodes
in those graphs. If the number of changes is constant, our method therefore has a
runtime linear to the amount of nodes in the input trees.

Figure 6.21 and Figure 6.22 show the runtime with an increasing number of chang-
es with a constant number of nodes (20000) in the input trees for the nasa1 and the
orders dataset. The number of edit operations our method produces is near 20000
with 10000 changes for both datasets. That means at this point it does remove ev-
erything and insert it again, i.e., it does not find any similarity. As investigating
similarities needs computational power, this is the reason the runtime in Figure
6.21 is not proportional to the number of changes. This is also the reason the graph
with the orders data set (Figure 6.22) does not have a runtime super-linear to the
number of changes anymore.

Our method has, in conclusion, a runtime super-linear to the number of nodes
and changes, because of the path generation. This is something that could be fixed
by using a different, more efficient tree implementation, which supports a path gen-
eration proportional to the depth of the tree, or by choosing a different output for-
mat, which does not need the paths.
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Figure 6.12: Runtime results for nasa1/one child change nocopy.
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Figure 6.13: Runtime results for nasa1/one child change nocopy with a larger
number of nodes.
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Figure 6.14: Runtime results for orders/one child change nocopy.
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Figure 6.15: Runtime results for nasa1/one child change copy.
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Figure 6.16: Runtime results for orders/one child change copy.
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Figure 6.17: Runtime results for nasa1/const change 10 nocopy.
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Figure 6.18: Runtime results for nasa1/const change 10 copy.
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Figure 6.19: Runtime results for orders/const change 10 nocopy.
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Figure 6.20: Runtime results for orders/const change 10 copy.
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Figure 6.21: Runtime results for nasa1/incr changes.
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Figure 6.22: Runtime results for orders/incr changes.
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6.4 Comparison to Other Methods

To evaluate method’s quality we compared the results with other tree differencing
methods. The problem, as already mention in the related work (chapter 3), is that
most methods have only a limited set of operations, i.e., no move operation or no
copy operation or they work only on unordered or ordered data.
Even when they are comparable they often suffer from bugs, excessive runtime or
enormous edit scripts for basic changes. Other comparative studies with real data
(Open Office files and genome data) have found these shortcomings as well [40, 17].
Those studies have both also found that XyDiff [31] is the only serious contender.
Unfortunately, the original homepage of XyDiff is not reachable anymore, but we
still found it in the recesses of the internet and managed to compile the 10 year old
piece of software. There is a Java version of XyDiff which is much easier to work
with, but also runs about a hundred times slower than the original version written
in C++.
A summary over all similar methods can be found in the related work chapter in
Section 3.3. As mentioned there, X-Diff has no move support and is slow (O(n2))
anyways and we therefore not considered it further. The 3DM matching method
produced wrong edit scripts and is not considered further either because it is there-
fore not fit for purpose. This leaves DiffXML and XyDiff with DiffXML having
worst-case complexity O(n2). We refrained from testing it on larger trees as the
runtimes are relatively long, e.g., for 8000 nodes it already runs nearly ten seconds
while XyDiff and our method runs in a few milliseconds.
To make the comparison fair we turned off sub-tree deletes as XyDiff does not sup-
port them. DiffXML theoretically uses them as well, but we granted that advantage.
Both also work in ordered mode, where the order of children is important. Since this
can introduce additional work and edit operations, we used our method in ordered
mode as well, i.e., with the reorder step described in Section 5.2.1. Both XyDiff and
DiffXML were modified such that they output the number of edit operations they
produce and the time needed to calculate the edit script. The measured time did
not include reading and parsing the XML trees or writing the edit script to a file.

6.4.1 Synthetic Data

This section shows the results of three different methods on data synthetically gen-
erated as before, i.e., by extracting an increasing amount of nodes from the nasa1
and orders XML data sets, then modifying this extracted tree. The modification
consisted of either random renames of one child of every node (one child change)
or of random inserts, deletes, renames or moves within the tree (const change x).
The data points are smoothed, as before, by calculating the moving average of 20
points at a time. We show bars for some points to show the minima and maxima
smoothed away. The range is again from 100 to 100000 nodes, but we had to stop
DiffXML early, because of its increasing runtime.
Figure 6.23 shows the number of edit operations different methods produce on the
a subset of the orders data set changed by modifying one child of every node. The
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“Changes” line shows the optimal result a method can produce, namely simply
renaming all the modified nodes. This should be a worst case scenario of all algo-
rithms. Our approach consistently produces less edit operations than XyDiff. Fig-
ure 6.24 shows the runtimes of the different methods. Our approach is slower than
XyDiff for smaller trees, but is faster for larger ones. We do not know why XyDiff is
so slow with this data set, but the exponential slope for our method is caused by the
XPath generation for the edit script. Since the number of changes is proportional
to the number of nodes n, every change requires at least one XPath, and the XPath
generation runs inO(n), because the orders data set is flat (the trees depth is small),
our edit script generation is dominating the overall runtime and runs inO(n2) here.

Figure 6.25 and Figure 6.26 show the number of changes the different methods
produce and the runtime of those calculations with an increasing number of nodes
from the orders data-set if the trees are modified by ten random tree edit operations
(const change 10 ). Since those are not a lot of changes, this can be seen as a best case
scenario. Our approach nearly always produces exactly that amount of changes,
i.e., ten and if not, the number of changes is only slightly higher. The maximum
amount of changes of our method is 62. XyDiff mostly finds the correct, low number
of changes as well, but often (about every tenth time) it produces highly erratic
results causing it to output more than 1000 change operations. For our algorithm
the average number of changes is 4.71 with a standard deviation of 3.59. XyDiff has
an average number of changes of 250.85 with standard deviation 707.86. DiffXML
has on average 1649.58 changes with standard deviation 1050.83.
Looking at the runtime of the algorithms our approach is still minimally faster and
exhibits a runtime increasing linearly with the number of nodes, which shows that
the edit script generation does indeed dominate the runtime and that the other steps
in our change detection and correction method run in linear time.

Figure 6.27 and Figure 6.28 show the number of changes and the runtime of the
different methods with an increasing amount of changes and a constant amount
of nodes (20000) in both versions of the trees for the orders data set. The amount
of changes our method produces consistently higher, than the amount of changes
XyDiff produces. This is the case, because the amount of information the feature
vector matching can use is low for the orders data set. It is an XML version of a
single database table and thus essentially a list. The feature vector matching takes
the hierarchical structure into account which does not exist in the orders dataset.
Increasing the amount of changes destroys this information further, until the feature
vector matching has next to no information to work with, that is, the result is as
good as without using this step. XyDiff then has the advantage, because it focuses
on the hash matching. The other change models, e.g., the one shown in Figure
6.23, do not exhibit this not enough information problem, because there the number
of nodes is increased with the number of changes. The runtime difference can be
explained by the different output formats. XyDiff produces output that shows the
change operations in-place while our method produces a difference file, i.e., a list of
operations. Thus, when XyDiff does remove tree A and inserts the whole tree B it
just has to write tree B, while our method has to generate at least |V (A)| + |V (B)|
paths, because we disabled sub-tree removes.
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Figure 6.23: Edit operations for the orders/one child change data set.
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Figure 6.24: Runtime for the orders/one child change data set.
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Figure 6.25: Edit operations for the orders/const change 10 data set.
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Figure 6.26: Runtime for the orders/const change 10 data set.
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Figure 6.27: Edit operations for the orders/incr changes data set.
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Figure 6.28: Runtime for the orders/incr changes data set.
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The same benchmarks for the nasa1 data set show a similar picture, except that
now the runtime of XyDiff is better when one random child node of every node is
renamed (See Figure 6.30; about two times faster). This is caused by the feature vec-
tor generation, their indexing, and the nearest neighbour queries. All those steps
run in O(n log n) time, but they are something XyDiff does not have to do. Given
that our method compared to XyDiff needs about half the number of edit opera-
tions (Figure 6.29) to express the same changes, we consider this additional amount
of work worthwhile. The number of changes our method produces is consistently
better when one random child per node is renamed. This is not the case anymore
when ten random edits are done (const change 10 ). XyDiff produces better results
there in a few cases. Still, our algorithm produces on average 8.95 edit operations
with standard deviation 25.60. XyDiff produces 24.12 changes on average with stan-
dard deviation 201.70. This can also be seen in Figure 6.31. Figure 6.32 shows the
runtime of the two methods. Our runtime is moderately higher than the runtime of
XyDiff. Our method thus produces a 2.69 times better result, so the runtime spent
on the feature vector matching step is worthwhile here as well.

Figure 6.33 and Figure 6.34 show the number of changes and the runtime of the
different methods with an increasing amount of changes and a constant amount
of nodes (20000) in both versions of the trees for the nasa1 data set. This time the
number of changes our method produces is significantly lower than the number
of changes XyDiff produces. This can be explained by the document centric nasa1
data set having more tree structure information. This information about the hierar-
chical relationships of nodes in the trees is used in the feature vector matching step,
which then can find similarities which XyDiff does not discover. The increasing
runtime, compared to the decreasing runtime of XyDiff, can again be explained by
the different output formats.

The matching using feature vectors, in conclusion, improves the generated edit
script in most cases significantly, while the speed of the overall method still remains
reasonable. Compared to the other methods this often means a consistently better
tree edit script quality. The XyDiff approach sometimes beats the runtime of our
approach, but it is always comparable, i.e., our method does not exhibit a runtime
like DiffXML. Figure 6.25 and 6.31 also show that XyDiff produces a lot of changes,
seemingly at random, even if the real number of changes is small. Our approach
does exhibit this behaviour to a much smaller degree as it is caused by disabling
mappings which an approximation method cannot avoid altogether. But contrary
to XyDiff, it does not select those disabling mappings as often and does not produce
as many changes even if it selects a disabling mapping. As this behaviour is always
undesirable, the runtime of our approach is comparable to the runtime of XyDiff,
and the number of edit operations our method produces is lower than XyDiff or
DiffXML in most cases, our approach is better than XyDiff and certainly better than
DiffXML.
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Figure 6.29: Edit operations for the nasa1/one child change data set.
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Figure 6.30: Runtime for the nasa1/one child change data set.
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Figure 6.31: Edit operations for the nasa1/const change 10 data set.
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Figure 6.32: Runtime for the nasa1/const change 10 data set.

99



6 Evaluation

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Ed
it

op
er

at
io

ns

Number of changes

XyDiff
This method

Figure 6.33: Edit operations for the nasa1/incr changes data set.
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Figure 6.34: Runtime for the nasa1/incr changes data set.
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6.4.2 Website Data

We downloaded the news websites http://www.bbc.co.uk/news/ and
http://www.tagesschau.de/ in 20 minute intervals. They were selected be-
cause they change frequently. After collecting 900 different versions of those web-
sites, we let our approach, XyDiff and DiffXML calculate the difference between
each consecutive pair of versions. Again no sub-tree delete or copy was used, and
the differencing worked with the ordered data model. DiffXML was sometimes not
up to the task and aborted with an exception; the following averages thus only con-
sidered the runtimes and results where it did not crash.
This is the result for the tagesschau data set:

Method Average num-
ber of edit
operations

Standard devia-
tion of the num-
ber of edit oper-
ations

Average
run-
time
(ms)

Standard devia-
tion of run-time

This method 81.41 42.41 120.93 9.61
XyDiff 960.99 366.99 37.12 6.32
DiffXML 359.12 278.37 2649.49 244.99

Since the trees are relatively small, the runtime of XyDiff is better. It is about 5 times
faster. Sometimes XyDiff even produces less edit operations than our method. This
happens when there is a relatively low number of changes. For example, XyDiff
produced 54 edit operations once while our method produced 94. This is offset by
times XyDiff produces a lot of changes, i.e., when our method produces 52 opera-
tions and XyDiff produces 1615. The standard deviation of the number of opera-
tions required by XyDiff is 596.29 while it is 88.10 for our method. This shows that
our method is much more stable, in that it does not have such an extreme worst-
case and that it does not run into that worst-case so often.

The bbc data set only confirms this view:

Method Average num-
ber of edit
operations

Standard devia-
tion of the num-
ber of edit oper-
ations

Average
run-
time
(ms)

Standard devia-
tion of run-time

This method 61.32 87.37 126.58 10.76
XyDiff 305.16 596.29 25.15 8.39
DiffXML 313.39 299.90 1399.85 309.64

The additional time our method needs to compute tree edit scripts is, in conclusion,
more than offset by the improved quality of the edit script. The number of changes
our method creates is several times lower (11.8 times and 5.0 times) than the number
of changes produced by XyDiff. Additionally the number of changes our method
produces is consistently low, and not, like XyDiff, sometimes low and sometimes

101

http://www.bbc.co.uk/news/
http://www.tagesschau.de/
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very high. DiffXML, having a quadratic runtime, is slow even for such small web-
site data. Our method is, in conclusion, the best method to calculate changes be-
tween different versions of websites.

102



7 Conclusion

In this work, we first introduced how to model evolving hierarchical data in general
and discussed under which circumstances having a change model would be bene-
ficial for applications which work with this hierarchical data. We then moved on
to state the problem itself in a flexible way which allows many such applications to
use the results of this method, followed by a comprehensive overview of existing
methods which work on hierarchical data. Introducing our own method we im-
proved upon this state of the art by combining several approaches with our own
effort, which we embedded in a flexible and performant framework which allows
eventual applications to tweak the method as they desire and also allowed us to
test, verify, and view the output.
Next, we evaluated which data structures and parameters are best for individual
parts of the algorithm. We compared the different data structures and evaluated
their usefulness. Comparing our method with others, we found that the quality of
the output of our approach is nearly always better while the runtime is comparable
to that of the best competitor’s runtime.

7.1 Future Work

As mentioned in Section 6.4.1 the runtime complexity of the overall method is some-
times bounded by the path generation during the edit script creation. Improving
this by introducing index structures for fast path generation would speed up the
creation of the edit script, if there are a lot of changes and the trees are relatively
flat. Another way to fix this would be to use a different output format, where the
change information is embedded into the trees.
Another area for future work could be to embed the change detection and correc-
tion method developed in this thesis into a larger framework allowing merges/rec-
onciliation of hierarchical data. Others have already tried to do that [27, 23], but
they used tree differencing algorithms considerably worse than the algorithm in-
troduced in this thesis.

7.2 Method Summary

The method worked by first doing a bottom-up hash matching. There, we calcu-
lated hashes for every node in the tree. Those hashes represented the whole sub-
tree rooted in those nodes – one node in this sub-tree differs and the hash changes.
We then mapped sub-trees to sub-trees with same hashes starting from the largest
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ones. In cases where more than one sub-tree with the same hash was found we
defined rules which improved the mapping quality. We also took a look at the top-
down matching used and how cases in which nodes with the same label exist can
be handled. We then showed how those two matching methods are used in a pre-
processing step.

Then we looked at cases where those basic matching methods failed and intro-
duced the concept of feature vectors to improve the matching quality in those worst-
case scenarios. We showed different ways to construct those feature vectors on dif-
ferent levels. First we showed different ways to build grams for trees and finally
settled on p,q-grams. Then we took a look how to best calculate the distance be-
tween grams of trees. Afterwards, we introduced two different methods to reduce
those grams to feature vectors with a fixed number of dimension. The first possibil-
ity was putting each of the grams into one of n frequencies, resulting in a histogram
of the hash distribution. Since same grams increase the same frequencies and dif-
ferent grams increase different frequencies with a high probability, comparing the
histograms gave us a similarity measure. The second method mapped each gram
to a point on an n-dimensional unit sphere. By adding all grams of a tree, we then
get a point in n-dimensional space representing the tree. Since the point on the unit
sphere of identical grams is the same and points of different grams differ, the prob-
ability that different trees are in each others vicinity is smaller than the probability
that similar trees are near each other. Looking closer at those two methods, we dis-
covered that their performance is the same for large n and a large number of grams.
For other cases the spherical distance should be preferred. Afterwards, we looked
at how to improve the distance measures by weighing grams with their frequency
with which they occur in the two versions of the hierarchical data.

Having reduced the trees to points in n-dimensional space, we looked for efficient
data structures which accelerate k-nearest neighbour queries. We considered k-d
trees with best bin first (BBF) search, Hierarchical K-Means (HKM) and K-Means
Locale Shared Hashing (KLSH) and described how they are build and how the k-
nearest neighbour queries can be performed on those data structures.

Having completed a description of the central matching method we described
how this method is embedded in a general framework that can handle XML, HTML
and JSON as input, uses an efficient tree implementation and can generate and out-
put the edit script in the form of a set of operations in both XML and JSON. It is also
explained how the nodes are reordered if their order has changed, if so desired.

7.3 Results

We analysed and compared the performance of the different data structures accel-
erating the k-nearest neighbour queries. HKM was shown to be the most consistent
such data structure with a reasonable performance/quality trade-off, and was se-
lected as default for our method. We tested the feature vector matching quality
using HKM and thus gained insight into how much precision is lost by using such
an approximate nearest neighbour method.
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Then we took a look at how the runtime of the whole algorithm behaves with an
increasing amount of data and found that it scales well with the amount of input
data.
Finally, we compared our method with other available methods on natural and syn-
thetic data, finding that our method almost always improves the edit script quality
with only a moderate increase in runtime, compared to other, simpler methods.

Our approach has with the optional copy or remove operations on sub-trees a
more expressive set of change operations and can therefore produce tree edit scripts,
describing the difference between versions of hierarchical data, that use fewer op-
erations than previous methods. Our approach also works on both, hierarchical
data where the order of siblings is important, and on hierarchical data where it is
not important. Previous methods only worked on either ordered or unordered hi-
erarchical data. Even if our approach is not allowed to produce copy operations, it
generates fewer operations than all other comparable methods in most cases. This
improvement is accomplished using a novel matching method using feature vectors
for trees and data structures for fast nearest neighbour queries in high dimensional
spaces. Even though we introduced this additional matching method, the overall
runtime of the algorithm producing the changes is only insignificantly higher, or
sometimes even lower, than the runtime of comparable methods. The approach
presented in this thesis therefore constitutes a significant improvement upon those
existing, comparable methods.
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